
An Application Recorder and Player

Chee-Wen Shiah, Jyh-Ching Cheng, and Wen-Chin Chen

Communication and Multimedia Lab.
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C

Abstract: This paper will discuss how to record the execution progress of an

application and reproduce it. The recording and reproducing of an application

execution progress, called application recorder and application player

correspondingly, can be applied to the application-sharing function of a groupware

system or the instruction mechanism of a software package.

The application recorder is responsible for recording the execution progress

of an application and storing them into a recorded file, such that the application player

can reproduce the execution progress. An application execution typically invoke the

requests of system calls, and processing of messages. The system calls and messages,

therefore, are the basic elements to be recorded.

The recording process consists of many steps, includes: interception, analysis,

packet and storing; while the reproducing process includes: retrieve, analysis, packet

and invocation. There are also many implementation details should be considered, such

as: resource processing, choice of interception point, time simulation and reproducing

direction. In the future, the recorded content could be further developed toward a

script-like language to provide the editing capability.

 1 Introduction

 1.1 Background

The application sharing capability had been considered as a very important

feature of a CSCW system. There are many shared application systems developed,

such as: XpleXer (STC German), SharedX (HP), X/TeleScreen (NIS Inc.),

Xwedge(ET Zurich), XTV (UNC, ODU), Joint/X(SieTec), ShowMe ShareApp(Sun),

ProShare (Intel), NetMeeting (Microsoft), XMX(BU). Most of them are X-based

shared window system, except the ProShare and NetMeeting, they are MS-Windows-

based. Those systems are based on the interception and further processing of the

communication between shared applications and the display interfaces. Two basic

components are: the interceptor and the reproducor, we call them application recorder

and application player correspondingly. The application recorder and player can be

applied to other situation such as: instruction, product presentation, annotation and so

on. We choose the MS Windows environment as our developing platform, due to the

already existed rich popular application packages and the demand of our experimental

virtual classroom.

 1.2 Basic Concept

 There are several recording and playing tools developed in the X Windows.

Before introducing our system architecture, we will review the basic concept of the X-

based application sharing system. Most of well known issues can be found from the

related research. Then a brief description of how to implementing a similar system on

the MS Windows operating system will be provided.

 1.2.1 X-based window sharing

 The execution model in X Windows system is a client/server model. An

application in X Windows is called an X client, while the display server called X server.

When an application started, the X client will establish a connection to an X server.

The X client sends requests to X server, and X server responds replies, events or

errors. The requests, replies, events and errors form the X protocol. By means of

intercepting the X protocols(i.e. keep listening on certain port) and processing (i.e.

recording) them, we can monitor and reproduce the whole execution progress of an

application. An application sharing system could consists of three parts: a recorder , a

player and the record file. The recorder intercepts the X protocols while the execution

progressing and stores them in the record file. If we want to reproduce (or playback)

the execution progress, we can utilize the player. In a typical player tool, there could

be two components: a pseudo X client and a control panel. The pseudo X client reads

the data from record file, transfers it through some translation process to the control

panel, and sends it to X server. Beside that, the control panel can send control

instructions to the pseudo X client to control the playback direction(reverse, pause,

stop, or random access).

 1.2.2 MS Windows system concept

 When an application starts, the MS Windows operating system can be roughly

divided into five portion from the application’s viewpoint: the application itself, the

window subsystem, some message queues, the base operation system and several

hardware devices. The figure 1-1 illustrates this point of view. While application

executing, it will invoke many system calls for system services. A system call is an API

in MS Windows system. The services are supported by the window subsystem which is

mainly composed by 3 DLL: USER, KERNEL, and GDI. Besides the system API calls,

an application also sends or fetches messages to/from the message queue to achieve its

task. Therefore, the API calls and messages are the basic elements which we will

intercept, analyze and record in our application recording system. However, to

intercept the API calls and messages within the MS Windows system are more difficult

and complicated than to intercept the X protocol within X-Window system, due to the

former is not a native client/server platform. An Win32 API interception mechanism

for the Windows 95/NT had been proposed by Matt Peitrek in [3].

 Besides API call and message, the resource handling is another important

issue in the MS Windows system. There are many kinds of resources such as bitmap,

menu or dialog box, by which an application can achieve their content presentation. All

resources have their own life cycle and a resource identifier (i.e. resource handle). Any

reference of a resource is achieved by the resource handle, and should be carried out

within the life cycle of that resource. The handles of all resources are allocated,

destroyed, and maintained by the base operating system.

Fig.1-1 Overview of MS Windows system from applications

Application Instance

Windows
Subsystem (DLL)

API Level

Ring3

Ring0
Base Operation System

(Management, Device Driver, …)

Hardware Devices (Keyboard, Monitor, …)

InputOutput

API Call

App Message Queue

CallBack

Input event, System Msg

Send Message

Windows OS

 …

Fetch Message

 2. System Architecture

According to the features and MS window environment, we consider the

system architecture of recorder and player. The system can be divided into three

components : a recorder, a player and the recorded files. In the conferencing system or

virtual classroom , there could be more than one applications executed concurrently,

so the recorder must have the ability to record multiple applications simultaneously.

Just as playing a video tape, the player should support the speed and direction control.

Besides, recorded files size and efficiency of recording must be took into consideration.

If the recorded files size is too large, it will occupied the hard disk space. The

efficiency of recording is important by reason of it will slow down the speed of the

application execution if the recording overhead is large. There are many components in

the recorder and player.

 2.1 Recorder

The Recorder consists of API interceptor, message interceptor, API filter, message

filter, main recorder module and recorded data. The figure 2-1 is the architecture of

the recorder. The application will invoke API call, send or fetch message while

execution. The API and message interceptor first intercept the API call and message.

After that, the interceptors transfer them to API and message filters. The filters are

responsible for analysis, packing and forward them to main recorder module for

Virtual App.
Instance

Virtual App.
Instance

Application
Instance

Fig.2-1 Architecture of Application Recording System

Windows OS

Messages

Recorder

Record
File

Application
Instance

Application
Instance

Messages

API Calls

API Calls

Record
File

Player

Playback
Control
Panel

Windows OS

Virtual App.
Instance

Network

recording.

 2.1.1 Main Recorder Module

There are two actions of the main recorder module.

The main recorder module is responsible to injecting the interceptors and filters

modules into the application process. This is because the Win32 environment. The

method about injection is discussed in another article[4].

Beside that, it also receives the data from filters and record them into the files while

application execution.

 2.1.2 Interceptor Module

The interceptor is a bridge between application instance and API(Message) processor.

In the original situation, the application invoke an API call and execution path enter

the API entry of Windows OS. If the Interceptor is injected into the application space,

an API call will be intercepted and transmitted its associated data to API processor.

After that, the interceptor will invoke the original API call. The message interceptor is

similar to API interceptor except that message is pass to application for process.

Windows has built in interceptors of message. One can invoke some API to make use

of the interceptor.

Fig.2-2 Components of Recorder

Application Instance

API
Processor

Windows OS

Recording
Module

Message
Processor

API
Level

API Calls

Messages

API Info

API
Interceptor

Message
Interceptor

Msg Info

Recorder

Record
File

API Calls

Messages

 2.1.3 Processor Module

The Processor consists of two modules : API processor and Message processor. Both

processors have the responsibility to analyze, extract and pack the information of an

API call or a message. The most consumed time in recording process is the stage of

this process because there are various kind of API calls and messages. The process

must distinguish the type and process it by different kind of methods. Both will take

much time to do. The efficiency of the recorder largely depend on processor module.

The process flow of API(Msg) processor is shown in figure 2-3. For time simulation,

the time point of one API call should be recorded. After that, an API call or message

will be processed. Both API call and messages have many different types. These

different types should be processed by different methods. After special type process,

the common process will do for any API calls and messages. The common process

includes packing system time, types, name, parameters and return values. Finally the

packed data will be sent to main recorder module for real recording.

API Interceptor

Original :

Application
Instance

Call API1

Call API2

Windows
OS

API1 Entry

API2 Entry

Intercepted :

Fig.2-3 API Interceptor concept

Application
Instance

Call API1

Call API2

Windows
OS

API1 Entry

API2 Entry

Interceptor 1

Interceptor 2

Interceptor 3

API Processor

 …

 …
 …

 …
 …

 …
 …

: Call into
: Return from

 2.2 Player

The player is composed of four components : reproducing process, player control

panel, recorded data and Windows OS. The reproducing process is responsible for the

main reproducing task. The recorded data stored in recorded files will be retrieved,

analyzed, unpacked, translated and reproduced into an API call or message. The

reproducing process will invoke the API call or route the message. The series of the

reproducing of the reproducing process will make the progress of application

execution play again. The visual application instance is the one shown in the output

device. The player control panel is an interface for user to control the reproducing

process. It will send control instructions to reproducing process such as speed or

direction control.

Fig.2-4 Control diagram of API (Msg) Processor

Get System Time

Process special type

Pack system time,
API (Msg) type, name,

DLL name,
parameters, return value

to Recording Module

Is Special Type ? Yes

No

from Interceptor

 2.2.1 Reproducing Process

The reproducing is responsible for reproducing the original API call and message. The

process of reproducing an API call or message is shown in figure 2-5. An recorded

API call or message is one packet in the recorded files. The reproducing process will

read these packets and process them. The reproducing process consists of five

components : dispatcher, API reproducing module, message reproducing module,

resource reconstructor and handle table. After one packet is read from the recorded

files, the dispatcher first distinguishes the type of the packet and dispatches the packet

to its API or message reproducing module. If the packet contain resource, the API or

message reproducing modules will invoke the resource reconstructor to reconstruct

the resource. All of the API, message and resource reconstructor will access the handle

table. The API module will reproduce the original API call and invoke it. It is similar

to message reproducing process, except that the message is routed.

Fig.2-5 Components of Player

Playback
Control
Panel

Virtual Application

Instance

Player

Handle

Table
Reproducer

API
Level

Windows OS

Control
Instruction

Reproduced
API ,Msg

Record
File

 2.2.1.1 API (Message) Reproducing Modules

The API or message reproducing modules are responsible for reproducing an API call

or message. The figure 2-6 is the steps of API or message reproducing including API

(Msg) type checking, parameters preparation, resource reconstruction and identifier

management, time simulation. Different type of API and message have different special

process. The resource reconstruction step is processed by resource reconstructor.

 2.2.1.2 Resource Reconstruction and Management Module

API Reproducing

Message Reproducing

Resource
Reconstructor

Fig.2-6 Architecture of Reproducer

 Packets from
Record file

D
istinguish P

acket T
ype

W
indow

s O
S

Message
Routing

API Call

Reproducer

Handle
Table

The resource must be constructed before it can be used and destroyed after it is no

longer be used. There maybe some resource references between creation and

destruction. Resources are constructed by API calls. If the packet is an API call

creating a resource, the API reproducing module will invoke the resource

reconstructor to reconstruct the resource. Because the resources are referenced by

identifiers allocated dynamic by Windows OS, there must be a management module to

manage the resource mapping mechanism. The responsibility of the management

module includes saving or clear identifier mapping entries, identifier translation.

 2.2.2 Play Control panel

The speed and direction controls are completion by the cooperation of play control

panel and reproducing process. The play control panel provides an interface for user to

control the reproducing speed or direction. The figure 2-8 is shown to us the steps.

The play control panel setup the initial parameters for play such as speed, play style,

etc. Then it starts the reproducing process. The reproducing process will enter a loop

to reproduce each API call or message. While the reproducing process completes an

API call or message reproduction, it will check the play status changed or modified by

play control panel. The play status includes speed factor, direction factor and play

style.

distinguish API(Msg) Type

simulate timing

prepare API call(Msg) parameters

reconstruct resource and
translate resource identifier

invoke API(route Msg)

Fig.2-7 Control diagram of API (Message) Reproducing

save or clear resource identifier

Does invoked resource exist? Yes

No

 2.3 Recorded File

The recorded file consists of packets. Figure 2-9 is the packet format. There are six

fields in one packet. Packet Type is the field to decide if it is an API packet or message

packet. The API call and messages may be classified into several types. Each type will

be processed differently. These types are recorded in Sub Type field. The Time field is

the time point of an API call invocation or message routing. The field is used for time

simulation. The Data Size field is the size of the Packet Associated Data field. Because

the Packet Associated Data Field contains information about an API call or message

such as names, parameters and a return value, its size is variable. We must record its

size by another field. The last Packet Size field is used for reversibly playing.

 3 Issues and Discussion

 3.1 Resource Retrieve, Reconstruction and Management

Fig.2-9 The format of recorded data

Fig.2-8 Interaction between Playback Control Panel and Player

Input recorded file

Start reproduce process

Setup initial attribute
(speed, style)

Open file and Initialize

Reproduce API (Msg)

Modify Attribute and Control

Playback
Control Panel Player

Handle instruction

Packet Type Data Size Packet associated DataSub Type Time

Variable SizeFixed Size

 Packet Size

Fixed
 Size

End End

Stop Pause

One Step,
speed

The resource has its own life cycle: from creation, modification, use to destruction.

Each action has corresponding process for recording and playing sides. If the packet is

a type of resource creation, the resource data should be extract and recorded. The

resource identifier must be also recorded in the files at recording side. At playing side,

the player will reconstruct the resource according to the resource data and save the

recorded identifier and newly created one for later references. If the packet is a type of

modification or use, the recorder should record the resource identifier being referenced

while the player should translate the resource identifier to its corresponding one. At

last, when the resource is destroyed, the recorder do the same thing as modify or

record while the player should first translate the resource identifier to its corresponding

one and remove the pair. No matter what the resource type is, they can be managed by

those methods in the figure 3-1.

 3.2 Choice of Interception Point

Because the one process may contain execution file and other non system DLLs, there

exists some system API call invocations in the non system DLLs. Besides, the system

DLLs may invoke API calls in other system DLLs, so the points being intercepted are

not simple. The figure 3-2 illustrates the various paths of API calls. The path 1 is not

the choice of interception because the API calls are not ones of system DLLs. Not

every machine has this DLLs, so we don't choose to intercept. The path 2,3,5 must be

intercepted, but the path will cause some problem. Because the DLLs has only code

AppendMenu()

SetMenu()

DestroyMenu()

Creation

Modification

Use

Destruction

Extract and record resource data
and identifier

Type Process of recording side Process of playing side

Reconstruct resource and its
identifier, save resource
identifier into table

Record the resource identifier Translate corresponding
resource identifier

Record the resource identifier Translate corresponding
resource identifier

Record the resource identifier Delete corresponding
resource identifier

LoadMenu()

Example

Fig.3-1 Resource Process

instance in the system, it will interfere each other if not only one application instance

use the DLL concurrently. We must distinguish the recorded one and normal execution

one. The path 4 sometimes should be care and sometimes not according to its

regularity of invocation times. If the invocation times are fix, it can be not care about.

 3.3 Time Simulation

The concept of time simulation is simple. If the time slice between two API calls or

messages routing in recorder side is the same as the one in play side, the time

simulation is done. The time spent in recorder side includes recording steps, API calls

or message routing, application execution. The time spent in player side includes

reproducing preparing, API calls or message routing and the time delay to simulate.

 3.4 Reproducing direction and Jumping Reproducing

The function of reproducing direction and jumping reproducing will meet two main

problems. The first one is output problem. Simply recording the API calls and

messages is not enough to solve the problem because the output will disturb each other.

If we want to back to some time point previously, we must restore the output status in

that time point. But we cannot know the output status in that time point.

Another problem is resource management. The resource has many steps from its

creation to destruction. If we jump some steps, there must be some problem occurs

such as skipping the resource creation or destruction step. The figure 3-3 is an

example of execution progress. If the reproducing process has been reproduced the

Fig.3-2 The point of Interception

Application

Executed Instance
Non System DLL

System DLL ASystem DLL B

API Level

Windows OS

1

5

4

3 2

first three API calls and the user wants to jump to API 8, there are two situations will

encounter because one resource is destructive and another is creative. The resource 1

has been destroyed at the time point of API 8, so API 7 should be called to destroy the

resource 1 and the resource identifier entry corresponding to resource 1 should be

removed. Second, the resource 2 is already created at time point of API 4 and

modified at time point of API 6. So we must first reproduce API 4 and 6, let the

resource 2 correctly in its state. After all, before reproducing API 8, the API 4, 6 and 7

should be reproduced first and the jump will succeed from API 8.

 3.5 System Performance Analysis

The recorded file size and packet number are illustrated in figure 3-4 and 3-5. As time

goes, the quantum increased. There are three points should be taken care from the

curve of figure 3-4. In the initial stage, the curve is a slope. This is because there are

many resource being constructed in this stage. The resource usually has raw data

largely. After that, the execution enters the interactive stage, the small pulses are

resulted from user operation. The sharp slope at 23 sec is an action opening a file. The

file contents are fully recorded in the recorded files. After 24 sec, the recorded size is

about 30k bytes totally. The figure 3-5 has one point to notice. The message packets

increase more than API ones. This is because the mouse or keyboard inputs are

frequent in the interactive stage while the execution progress is in initial stage, the

API Number

1

2

3

4

5

6

7

8

9

API Type

Create R1

Modify R1

Use R1

Create R2

Use R1, R2

Modify R2

Destroy R1

Use R2

Destroy R2

R1: 1-7

R2: 4-9

Fig.3-3 An Example of Resource Usage

message packets is close to zero.

Notepad

0

10000

20000

30000

40000

.5 3 .5 8

10
.5 13

15
.5 18

20
.5 23

Time (Second)

R
ec

or
de

d
 F

ile
s

S
iz

e(
B

yt
e

)

Total Size

API Size

MSG Size

Fig.3-4 Recorded File size of Notepad application

Notepad

0
50

100
150
200
250

.5 .5 .5 .5

12
.5

15
.5

18
.5

21
.5

24
.5

Time (Second)

R
ec

or
de

r
P

ac
ke

t
N

um
be

r

API Number

Msg Number

Fig.3-5 Recorded packets number of Notepad application

 4 Future Works

 4.1 Recorded File Size Minimization

In the recorded files, the data of resource take a large portion. The resource data often

contains binary data such image raw data or text. If we can compress the resource data,

the recorded files size will be small.

 4.2 Reversibly Play

The ability to reversibly play is useful. Just like video play, the reproducing of

execution progress make a user to review the application execution.

 4.3 Edit

One can modify the recorded data to edit the execution progress such as adding some

portion of the progress into another or erasing some portion. Moreover, the recorded

files format can be developed to script language for more editing.

 5 Conclusion

The figure 5-1 is the interface of application recorder. One can press the file button to

select a file from dialog or type directly in the edit box. After that, press run button to

start and record the application or cancel button to escape.

Fig.5-1 Interface of Application Recorder
 The figure 5-2 is the interface of application player. One can select a recorded file by

the open button and play the progress by the play button. There are three status will be

shown in the interface : no(no application running), running and pause. There are two

play styles : normal and step. One can choose continuously play or step by step trace.

The Time check box is an option to simulate time factor of the execution progress.

Fig.5-2 Interface of Application Player

 6 Reference

[1] “A Practical Point-to-point Filter-based Shared Window System”, Chee-Wen Shiah,

Jye-Ching Cheng, and Wen-Chin Chen,1995

[2] “Recording and Playing of X Protocol Messages in XTV”, Hussein Abdel-Wahab,

September 20 ,1995

[3] Matt Pietrek “Intercept Win32 API”, PC MANAZINE Chinese version APRIL 10,

1995 , p 246-255

[4] “Load Your 32-bit DLL into Another Process‘s Address Space Using

INJLIB”,MJS:1994#5(May),Microsoft Development Library

[5] “Learn System-Level Win32 Coding Techniques by Writing an API Spy

Program”,MJS:1994#12(Dec) Microsoft Development Library

[6] Abdel-Wahab,Hussein M.andFeit,Mark A.,“XTV: A Framework for Sharing X

Windows Clients in Remote Synchronous Collaboration”, Communications for

distributed Applications & Systems, Chapel Hill, North Carolina, pp. 159-167, April

1991

[7] Chung,Goopeel, “Accommodating latecomers in a system for synchronous

collaboration”, MS Thesis, Department of computer Science, University of North

Carolina at Chapel Hill, 1991

[8] Issues, Problems and Solutions in Sharing X Clients on Multiple Displays“,

Internetworking: Research and Experience, Vol.5,pp 1-15,1994

[9] Jeffrey Richter, “Simulating Keyboard Input Between Programs Requires a

(key)Stroke of Genius”, MSJ: 1992#8. Microsoft Development Library

[10] James Finnegan, “Hook and Monitor Any 16-bit Windows Function with Our

ProcHook DLL.” Microsoft Journal, January 1994, Vol.9, No.1.

