Table of Contents

- WAP Process
- WAP Architecture
- Wireless Transport Protocol Overview
- Wireless Session Protocol Overview
- Wireless Application environment Overview

WAP Process

- Objectives of WAP
- Membership benefits
- WAP publications
- WAP Board of Directors
- Participation process up until v1.0 release
- Participation process after v1.0 release

Objectives of WAP Forum

- Bring Internet content and advanced services to digital cellular phones and other wireless terminals
- Create a global wireless protocol specification to work across differing wireless network technologies
- Submit specifications for adoption by appropriate industry and standards bodies
- Enable applications to scale across a variety of transport options and device types

Membership benefits

- Contribute to current specification work
 - see all drafts before the public version comes out
 - provide comments on drafts to technical chairmen
 - provide input for consideration
- Participate in driving future evolution of WAP
 - participate directly in future working groups
- Nominate and elect new directors to the WAP Forum board
 - eight positions for new directors will be available

WAP Publications

Publication on the Web: http://www.wapforum.org

WAP History & Schedule

- 26 Jun 1997 WAP effort launched by founders
- 15 Sep 1997 WAP architecture published
- 30 Dec 1997 WAP Forum LTD. legally registered
- 07 Jan 1998 Briefing for early endorsers
- 30 Jan 1998 Draft spec available for members to review
- 13 Feb 1998 1st Members review and briefing meeting
- Feb 1998 Draft WAP specifications available to public
- Mar 1998 2nd Members review and briefing meeting
- May 1998New working groups created for futureevolution

WAP Board of Directors

Joakim Nelson

Ericsson

joakim.nelson@ecs.ericsson.se

Jerry Upton Motorola jerry_upton@wes.mot.com

Mikko Terho Nokia mikko.terho@nmp.nokia.com

Chuck Parrish

Unwired Planet

chuck@uplanet.com

Participation process up until v1.0 release

- New members of WAP Forum will be able to influence the finalization of the WAP specifications
- Overview meeting for new and prospective members from 1 to 5 PM on February 12
- First detailed technical briefing for members, February 13 from 9 to 5 PM
- Second detailed technical briefing for members, week of March 9

Participation process after v1.0 release

- Working groups will be reconstituted to include a broader representation
- Additional working groups may be created
- An expanded input process will be developed to support a larger number of participants with greater interaction
- Efforts will be launched to address
 - compliance
 - interoperability

WAP Architecture Overview

Service Development - Concept Overview

What is defined in WAP ?

Micro-Browser

• concept that is similar to the Internet browsing

Scripting similar to JavaScript

• provide means for dynamically enhancing MS capabilities

• WTA / WTAI

• access telephone functionality e.g. call chains

Content formats e.g.

- business card (vCard)
- calendar event (vCalendar)

Layered telecommunication stack including

- transport
- security
- session

WAP Architecture

Wireless Application Protocol

Wireless Application Environment (WAE)

CSD

Wireless Session Layer (WSP)

Wireless Transport Layer Security (WTLS)

Wireless Transport Layer WTP/D, WTP/T, WTP/C

CDMA

CDPD

IS-136

Other Services and

Applications

PDC-P

Etc...

© January 8th, 1998 WAP Forum Ltd. Bearers:

SMS

USSD

The new W-acronyms

WAE = Wireless Application Environment WML = Wireless Markup Language WMLScript = Wireless Markup Language Script WTA = Wireless Telephony Application

WSP = Wireless Session Protocol WTLS = Wireless Transport Layer Security WTP = Wireless Transport Protocol

Other Terms

- Other applications = applications using WAP services like session or application layer
- URL = Universal Resource Locators, which are the key addressing mechanism in internet as well as in WAP

Content formats = formats to exchange data

e.g. image, calendar (vCalendar), and phone book (vCard) data

Events = State Transitions in:

WML Browser (e.g. User Input or Navigation), WTA Browser (e.g. Network Events)

Comparison between Internet and WAP Architecture

Concept Comparison - WAE

Concept Comparison - WSP and WTLS

Concept Comparison: WTP

WAP and Related Network Elements

WAP Forum Ltd.

Wireless Transport Protocol Technical Overview

Overview

• WTP Spec for January 1998

- Goals and Requirements
- Architecture
- Services
- Protocols
- Bearers
- Work Items for 1998
 - work items to be completed by 1Q98
 - work items to be completed by 4Q98

Goals for WTP

- a common interface to physical transport mechanisms
- provide a port-based abstract interface to upper layer protocols
- allow applications designed independent from specific transports
- extensible to a variety of digital wireless networks and future transport options
- supports connection-oriented, transaction, and datagram modes
- optimize for narrow to medium bandwidth channels
- ensure multi-vendor interoperability
- allow peer-to-peer, client/server, and one-to-many applications
- to be capable of implementation in a low memory footprint, suitable for "standard" or "low-IQ" handsets

Requirements for WTP

- WTP/C provides a reliable connection-oriented service to the upper layer
- WTP/T provides a reliable transaction-oriented service suitable for web browsing
- WTP/D provides a datagram service
- lightweight : implementable in <= 10Kb (low memory/computational needs)
- a minimum implementation of the protocol should be possible
- a reference implementation will be used to evaluate the acceptance criteria
- support the selection of an underlying bearer by the upper layer

Requirements (continued)

- eliminate need for applications to be aware of the specifics of available transports
- protocol must be modular to allow various security solutions
- port numbers must be supported
- efficiency with respect to over-the-air transmission
 segmentation and reassembly

selective retransmission

header compression

•low transmission overhead (reduce 3-way handshakes)

•optimistic handshake (call setup with data)

 scalability to operate over a range of wireless networks and devices

Architecture

WTP Detailed Architecture

Services

WTP consists of 3 protocols offering 3 different services to the upper layer

- WTP/D is the Datagram protocol
- WTP/T is the Transaction-Oriented protocol
- WTP/C is the Connection-Oriented protocol
 - under development, some risk for completion by v1.0

WTP/D (Datagram)

- provides a connection-less, unreliable datagram service
- WTP/D is replaced by UDP when used over an IP network layer.
- uses the Service Primitive
 - T-UnitData.req .ind

WTP/T (Transaction)

- provides reliable data transfer based on request/reply paradigm
 - no explicit connection setup or tear down
 - data carried in first packet of protocol exchange
 - seeks to reduce 3-way handshake on initial request
 - supports
 - retransmission of lost packets
 - selective-retransmission
 - segmentation / re-assembly
 - port number addressing (specific to WTP/T)
 - flow control
 - message oriented (not stream)
 - supports an Abort function for outstanding requests
 - supports concatenation of PDUs

WTP/C (Connection-Oriented)

- reliable data transfer based on long duration connections requiring full-duplex data exchange
- primary characteristics (TBD) of WTP/C
 - connection setup with negotiation of parameters
 - deterministic flow control appropriate for over-the-air transmissions
 - supports
 - retransmission of lost packets
 - selective-retransmission
 - segmentation / re-assembly
 - port number addressing
 - flow control
 - message oriented (not stream)
 - supports concatenation of PDUs
 - explicit connection disconnect

WTP/C continued

- uses service primitives
 - T-Connect.Req .Cnf .Ind .Res
 - T-Data.Req .Cnf .Ind .Res
 - T-Disconnect.Req .Cnf .Ind .Res

Bearer definition status for WTP

Bearer	Services/Protocols			Comments	
	Datagram	Transaction	Connection-		
	Service	Service	Oriented		
	WTP/D	WTP/T	Service WTP/C		
GSM SMS	Defined	Defined	Targeted 1998		
GSM USSD	Defined	Defined	Targeted 1998		
GSM C-S Data	Defined	Defined	Targeted 1998	Note 1, 2	
GSM GPRS	Defined	Defined	Targeted 1998	Note 1, 2	
IS-136 R-Data	Defined	Defined	TBD		
IS-136 C-S Data	Defined	Defined	TBD		
IS-136 Packet	Defined	Partial Def.	TBD		
CDPD	Defined	Defined	TBD	Note 1, 2	
CDMA SMS	Partial Def.	Started	TBD		
CDMA C-S Data	Partial Def.	Started	TBD		
PDC	Started	Started	TBD		
iDEN	Defined	Defined	Available 1Q98	Note 1, 2	
Mobitex	TBD	TBD	TBD		
DataTAC	TBD	TBD	TBD		

Note 1: any bearer supporting IP will use UDP as the datagram protocol for WTP/D. i.e. WTP/D over IP = UDP/IP.

Note 2: IP is assumed to be the network layer protocol for this bearer.
Service, Protocol, and Bearer Example

WTP Over GSM Circuit-Switched

RAS - Remote Access Server IWF - InterWorking Function

Service, Protocol, and Bearer Example

WTP Over GSM Short Message Service

defined in the WTP Specification

Work Items for 1998

Work items for WTP

1Q98 - v1.0

- complete protocol definition for WTP/T
- include architecture and protocol solutions for IS-136, CDMA, PDC
- service primitive definition finalization
- quality of service
- conformance statement

during 1998

- complete protocol definition for WTP/C
- management entity definition (functions and interface)
- tuning/performance data required (timer default settings)
- protocol verification (reference implementation)
- API for WTP

Wireless Session and Security Protocols Overview

Areas of responsibility

- WSP/B Specification
 - Provides upper layers with session services and management
 - Provides semantics and mechanisms based on HTTP 1.1
- WTLS Specification
 - Provides mechanisms for secure and authenticated communication
 - Based on SSL and TLS, optimized for use over wireless networks

Areas of responsibility (cont.)

- Possible other session protocols
 - None identified yet; WSP/B provides necessary functionality for currently identified application protocols

WAP Protocol Architecture

Internal Layer Architecture

Goals and Requirements for WSP/B

- Support current WAP transport protocols
- Provide HTTP 1.1 functionality
 - Extensible Request/reply methods
 - Composite objects
 - Content type negotiation
- Exchange client and server session headers
- Interrupt transactions in process on the server
- Push content from server to client asynchronously
- Key management
- Authentication
- Built on existing Internet security specifications
 - Proven and understood technology
- Negotiate support for multiple, simultaneous, asynchronous transactions
- Application acknowledgement
- Session suspend and resume

Goals and Requirements for WSP/B

- Support low-capacity bearer networks and devices with limited processor and memory resources
- Ensure interoperability between products from different vendors

WSP/B Specification Status

- Stable WAP Members' Draft of WSP/B will be available during January '98
- Will not be specified
 - Management entity
 - WSP API

WSP Technical highlights

- Based on HTTP 1.1
- Incorporates features from HDTP 1.1
- Builds on a request/reply mechanism
- Efficient usage of bandwidth is made possible by introducing compact binary encodings of well-known headers and content types
- Session suspend and resume
- Provides also a light-weight unreliable session service on top of datagram transports for implementation in low-end devices
- Supports performance enhancement features such as asynchronous requests and pipelining

Session creation and method invocation

- The session establishment phase is entered when the session is created. During this phase, the session layer performs the following functions:
 - Exchange of the client and server session headers
 - Exchange of the session identifier
 - Negotiation of session protocol capabilities
 - Optional data transfer

Session creation and method invocation

Data push mechanisms

The example given below shows the case of unidirectional, reliable data push.

WSP Work items

- Support for Quality of Service parameters
- Multicast data
- Ordered pipelining
- Chunked data transfer
- WSP Management entity
- Support for isochronous multimedia objects
- Other extended functionality that is not a part of the first public version

Goals and Requirements for WTLS

- Provide mechanisms for secure, authenticated communication
 - Data encryption using available encryption algorithms
- Provides an extensible architecture for security protocols
 - New cryptographic algorithms can be added
- Interoperability
- Lightweight and efficient with respect to bandwidth and processing power
- Support current WAP transport protocols

WTLS Internal Architecture

Upper Layer Protocols (e.g. WSP/B)

WTLS	Handshake	Alert	Application	Change Cipher
	Protocol	Protocol	Protocol	Spec Protocol
	Record protocol			

Transport Layer Protocols (e.g. WTP/T and WTP/D)

Lower Layer Protocols

WTLS Specification Status

- Independent third party security review will be arranged
- WAP Members' Draft available during January

WTLS Future evolution

- Recommend cryptographic algorithms
- Smartcard support

Wireless Application Environment Overview

WAE Overview

Application framework

- For network-oriented applications;
- On small, narrowband devices
- Developed by
 - Wireless Applications Group (WAG);
 - A WAP technical working group.

WAE Goals

- Network-neutral application environment;
- For narrowband wireless devices;
- With an Internet (WWW) programming model;
- And a high degree of interoperability.

WAE Requirements

- Leverage WSP and WTP
- Leverage Internet standard technology
- Device Independent
- Network Independent
- International Support

Requirements (cont.)

- Vendor-controlled MMI
- Initial focus on phones
 - Slow bearers
 - Small memory
 - Limited CPU
 - Small screen
 - Limited input model

WAE Components

• Architecture

- Application model
- Browser, Gateway, Content Server

• WML

Display language

• WMLScript

- Scripting language

• WTA

Telephony services API and architecture

Content Formats

Data exchange

Network Example #1: WAP Gateway

Network Example #2: WAP Application Server

WAE In-Device Architecture

WML

• Tag-based browsing language:

- Screen management (text, images)
- Data input (text, selection lists, etc.)
- Hyperlinks & navigation support
- Syntax: W3C XML (SGML derivative)
- Inherits technology from HDML and HTML

WML (cont.)

Card metaphor

- User interactions are split into *cards*
- Navigation occurs between cards
- Explicit inter-card navigation model
 - Hyperlinks
 - UI Event handling
 - History
- State management and variables
 - Reduce network traffic
 - Results in better caching

WMLScript

• Scripting language:

- Procedural logic, loops, conditionals, etc.
- Optimized for small-memory, small-cpu devices
- Derived from JavaScript[™]
- Integrated with WML
 - Powerful extension mechanism
 - Reduces overall network traffic

WMLScript (cont.)

- Bytecode-based virtual machine
 - Stack-oriented design
 - ROM-able
 - Designed for simple, low-impact implementation
- Compiler in network
 - Better network bandwidth use
 - Better use of terminal memory/cpu.

WMLScript Standard Libraries

Lang - VM constants, general-purpose math functionality, etc.
String - string processing functions
URL - URL processing
Browser - WML browser interface
Dialog - simple user interface
Float - floating point functions
WMLScript Example Uses

In general: reduce network round-trips and enhance functionality. Field validation

– *Check for formatting, input ranges, etc.*

Device extensions

- Access device or vendor-specific API

Conditional logic

- Download intelligence into the device

WTA

- Tools for building telephony applications
- Designed primarily for:
 - Network Operators / Carriers
 - Equipment Vendors
- Network security and reliability a major consideration

WTA (cont.)

WTA Browser

- Separate WML/WMLScript browser
- Exposes additional API (WTAI)
- WTAI includes:
 - Call control
 - Network text messaging
 - Phone book interface
 - Indicator control
 - Event processing

WTA (cont.)

- Network model for client/server interaction
 - Event signaling
 - Client requests to server
- Security model: segregation
 - Separate WTA browser
 - Separate WTA port
- WTAI available in WML & WMLScript

WTA Example

Content Formats

Common interchange formats Promoting *interoperability*

Formats:

- Business cards: IMC vCard standard
- Calendar: IMC vCalendar standard
- Images: WBMP (Wireless BitMaP)
- Compiled WML, WMLScript

New WAP Content Formats

Newly defined formats:

- WML text and tokenized format
- WMLScript text and bytecode format
- WBMP image format

Binary format for size reduction

- Bytecodes/tokens for common values and operators
- Compressed headers
- Data compression (e.g. images)

General-purpose transport compression can still be applied

Content Format Example

Example Use of an Image:

Summary: WAE Status

- Documents approaching WAP Members' Draft status
- Primary documents:
 - WAE specification
 - WAE architecture
 - WML specification
 - WMLScript specification
 - WTAI specification