NOKIA

WMLScript
Reference

Version 1.1

eeeeeeeeeeeee

WMLScript Reference

Version 1.1

Product number: SDK-01-000-003

Copyright © Nokia Corporation 1999. All rights reserved.
We welcome and consider all comments and suggestions. Please send them to:

Nokia Group Finland
P.O. Box 226,
FIN-00045 NOKIA GROUP

Tel. +358 9180 71
Fax. +358 9 656 388

Internet mail address:
wap.sw.developer@nokia.com

ht t p: // www. f or um noki a. conl

This document is part of the Nokia Wireless Application Protocol Toolkit. The contents of this guide
are based on the Wireless Application Protocol WMLScript Specification Version 1.1 (WMLScript
Specification Version 16-June-1999) and on the Wireless Application Protocol WMLScript Standard
Libraries Specification Version 1.1 (WMLScript Standard Libraries Specification Version 16-June-
1999).

eproduction, distribution or transmission of part or all of this documentation in any form without the
Reproduction, distribut t f part or all of this d tat y f thout th
prior written permission of Nokia is prohibited.

The content of this documentation may be changed without prior notice.
“Nokia,” the arrows symbol and Nokia’s product names are trademarks of Nokia.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Portions of the Nokia WAP Toolkit contain technology used under licence from the World Wide Web
Consortium and are copyrighted by the World Wide Web Consortium (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).

© 1999. Nokia Corporation. Nokia is registered trademark of Nokia Corporation.

http://www.forum.nokia.com/

Contents

[T e [T Ty Lo o IR —— 1]
Benefits of USING WIMLSCIIPE cuvuveveeeveeeteeeeeeteeeteteetetetenesteeeneeeetesseeeenesseseseneesesessesens 1
W IMLSCHIPE DY teCOdE INLEIPIETET wuvurererttreeteteteteteieieeeeeeeteteeeeetetetereneneeneseseenseeeas 2

[nterpreter ATrCRITECTUIE ..oveuevereeevereeeevereeeeeereteereteeeevereteerereesevesetrereseeresererresesens 2
s e 2 s) T — 3
S S S 3
[yPOographical CONVENTIONS. c.e.vcuieveeveviereeeeteteeeeteereeeerereeeeresereeresereesesereesenseressensens 4
T LY T et s YT —— 4
Documents included in the Nokia WAP ToOIKIt c..ceoveveeveriereiereierireeirenenes 4

O S S TS TS T 4
T T oY oy - — 7
MMLSCIIPE AN URLS c.vvieiieeeeieeeieteeeeeeseeecerssenessssncsssencnssssnencssnensasenencassssncnsas 7
LLeXICAl SEIUCTUTE 1.vveererererereretereretetetetetiereeesererererereseseesesesassesesesesesesesesessssnnnsssssnes 9
L OTIEEIIE LY PDES vveerreerreerreerreeiteeereeeesreenreeenseeesseessseensesenseeenseesnssesseeenseennseeenseennes 9
a5 SEIISIEIVITY cuvetiveeteeteeureuteteeteeteeseereeseersensensensesseeseeseeseessersensensensensesseeseeseensens 9

W hite space and [1Ne Dreakis u.c.uvuvveeveveeeeereeeeeeieeeseeeereeeeereesereeesereereereseeesessessenee 9
[JS€ OF SEMICOLONS veevviierieeiitiitictecteeteeete ettt et et ere e esaresaeetesaeesaeenns 10
[COTIUMIEIIES .uveeviieeireeeiieeeteeeteeeteeeteeetreeeeeeeseeesseeesseeesseeesseeesseensssenssennsseenssennsees 10
B e X —— 10
B e T — 14
S R aey ve 15

[N AITIE SPACES cuvveeurreeereeeitreeitteeitteeeteesteeesseeessreassseessreassseesseessssesssssesssessssessssessnees 16
Variables and data TYDESe.veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereeeeseseeenseseeseesecnsacencne 16
JET e S N S B R oy T T — 16
Variable scope and HEetIMe.......ve.eeerveeeseanns 16

V ATTab1E ACCESS 1eviiniiniieiiiiiiiiiceiei et eteeeseeenesesenesnsensensessesnssseeneonsensensensenes 17

V ar1aD L@ £ P ittt ittt sttt sassr s srssrsassnssrensshssrsnesne s snssnsrsnssnssnsnsans 17
%—values .. 17
e Lo L o A —— 18
NS s TR I T T 18
R e 19
T R) R T T — 19
e D 19
A SSIZNMEINT OPCIALOTS wvvverrenrerreeeeereereerrenreressessesresseereereessensersessessessessesseesensenes 19

A FTEhMEtICA] OPEIALOIS . vvetieivereeieteteeiietetiteteteteteteeeteteaeeteteeeesereseeserensesesernnas 20
B S et o 22

WNMLScript Reference

DUIINE OPEIATOTS tuveurveeeneereeeeneeteetentererteessestetereseenessestenessestenessesseressessenessesserees 22
COMPATISON OPETATOTS cuevveueeerenttetenetetesestetenesteeesesteseseeseeseessesenestesenesseseseneas 23
A L TAY OPEIATOIS 1euvrerrentreteereenreeneeereesseeneesreseesseesseenseenseessessessessseessesseesnseseeses 23
COIMITIA OPETATOT cuvtuteetenteteteterteeteeteeutetetensestessessessessesssensesensessessessessesseseenes 24
S e T e ey T 24
Y DEOT OPEIALOT . cveveererereeeereereerereereeereesenseseeserseseesersesesereesenseseesenseseesensesesseneens 24
SVALIA ODCIATOT wuveveereeveeeeeeeeeeerveeseesereereseeenesneseesnesnsonsonsonsossessesnessesneontonsonson 25
X DT ESSIONS c.vivviveietieesientienteenreeseeeseesseeseenseesseessessenssensesssesssenssenssonsesnsssnsesssonns 25
Expression Dindings .. oo 25

ULTLCELOTIS 1 1vveveenteenseenseessessenseenssenssesseessenssenssenseessenssenssenssensssnsesssesssenssenssesseessesssenses 27
I ieclaration .. 27
Eunction LY 28

CfAULL TEEUITI VAIUC ceeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeteeteeeeseeeeeseeenesneenraneons 31

Tt 31
NP TY STATEIMIEIIT 1uveeenireeeeireeeeeiieeeeeireeeeesreeeenseeeesreeeensseeeennsseeensseseenssesesnssseenns 31

X DI CSSION STALEINICIIE uvvevueneeeeeeeeeereneeeesesneeeseeeeessnneeessnneeessmneeesssnneeessnneeeseneeeessns 31
BIOCK STATEIMEIIT . ovon oo oovoooomooomooeosmesseseeesmseeeseseeeeeeeeeeseneneeseneeeeseneeseseneens 32
VS e et e — 32

T T e T ——— 34
PVTTE STATEITIONT . owsoooossoooosoooeosoeeessoemeeseeeesseeeseeereeseeeeeeerseeeereseeerseeeeeeeereeeerere 34
TSN ey 0oV o | TP 35
S T e TS T —— 36
[CONTINUE STATEINIEIIT c.veeuvieureereeereeereereereereeeseeeseeeseeseesseesserseesseessessesseesseesseesseens 36

R ETUITL STATEIMENT 1uveeeivieeeeiieeeeieeeeeitreeeeereeeeeisreeeeiseeeeessseeeessseeesseeeensssesesssseeeens 37
|y e L T 37
Btandard LIDraries. ... eeeereueuereeeeeeieeieteteteteteteteteeseeeeesetererereteteteeeesannesesenesenes 37
T 38
Fxternal COMPIlation UNIES ..cuvevevereereeerereeeereeereereneereereeeresereeressereesensereeneneens 38
ey r2 o) (T — 39
MLEta INTOITNATION 1uveievieitiiceeceieeceeeeeeeeeeesecsecesesnsensonsensessessesnesnsoneonsensonsensenes 40
IAutomatic data type conversion rulescc.cccuceuneun..n..... 43
[General CONVEISION FULES......voeeeveneeeseeeneseenesncaeenesreeencace 43
CONVErsions t0 SUING. oo 44
CONVErsions t0 INLeZer. i 44
Conversions to floating-POint. .. e eeeciieiiniiiiiiiiiiineciecinic e 44

T OTIVELSTONS £O DOOTEAIL . vomvmomomoo oo oeoesoesmseeeseeeeseseseeeeeeeeseseeeseeneeseseeeeseneens 45
Conversions to INVAlIdcceeveiereeeriereeierieerierereriereneereereeeerenersereeereereneerenns 45
DUITIITIAT Y 1.ttt ettt ettt etetesteteeteeteeneeneententensessessesnesneensensensensensessessesnesnsenes 45
Dperator data type CONVErSION TUIES.....cveeeveeeeveererireerereereteerenrereererereerereereeerenns 46
Bummary of Operators and CONVEISIONS.......cuevevereerereereerereereeereerereereesereeseeereane 48
BING1E-TYDEA OPEIALOTIS.c..cveeereerereeeerereereerereeseeeesesenesesonsonsessessessessesnesnsonconsonee 48
MUlti-typed OPEratorscvoveceeeeeeeeerererereneecettresesteteieteteneneccces st seseseenenene 49
Runtime error detection and handlingcccceevveeemeerrrreneeess 51
D e I e ey e TR —— 51
Frror handling.. oo 51
FALAL @ITOIS uviuvineiiieieeieeiee et iteeeeeeceae et et eneensessenesnseneensonsensensensessesnesnsonsontonsones 52
thecode CITOTS vovenvreriuinreusessnssssssensessesenssnssssnssssssensssssenssssnsnsesssssnsossnsensssessnssns 52,
Programmed abort e s inniniieiiiiiiicicee i 54
S S et e S e) o 55
EXtEINAl CXCODTIONS cuuvieveeveieeeieeireeiseeeveeieeeeseerseeesensssessenessesenessesoncssensorcssonsns 56

WMLScript Reference

[N e s) R 57
COMPULATIONA] €ITOTS wuteteiiieieietetetee ettt eeetereneneaenens 57
S R S S LS S e s T —— 58
S S S 22 T 59

MLScript standard libraries............cccciiiiiieeiiiiiieiiceieeces

0ZraPhICal CONMVENTIONS .. ititiiitirisiitistssiisiessisssssssssssssseessnsssssssnessssnsnssssnsnssnis 61
B IMILSCIIDT COMPIIANCEvooesoseeseesereneeeneeeeeneeeeeseeeeeneenseeneeneeeneeneenneeneeeeeeeees 62
T S e e Cr e 4 ey T —— 62
[DAta LYDE CONVEISIONS .uvveereiereeenrieenereenereeneeeeneressereeeeesseeesseeessesssessssesossesenses 62
Frror handling ..o 62
@g D TALY ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeneesmeesneenneenneenneeneeeneesneenneenneennce 63
B S ettt ettt et eae et saesheentsnseassat s e shssnssassnssntenssan s s snssnssnssnssarenes 63
Y1111, . .veeveereeereenreeneeeseeeteeseeseenseeseesseenseenseeseenseesseessenseenseenseensesnsesssesseesssenseenseens 63
0T PPN 64
T B AT 64
S sl (ST AT 65
SIIIE cuttt ettt e et e et e e e e e sbe e beeeebbe e breeeraeerreesaeereeenrasares 66
Y ST T 66
T E e 66
BEEE YL T 67
T ———— 67
EX1E cvvevvenreenreenreereeeseeeseenseenseenseensensseseenseenseenseeneeessenseenseenseenseensenssenssenseenseensesresann 67
Ny 63
e LY s T 68
T T ——— 69
S T o T 69
| s 70
Et .. 70
00 ittt ettt et sheea e sa e eheenr st et et s ehssassassnssassns st s s s arsshssnssassns 70
1 71
10 71
ST 72
BT T e evveeeeeeeeereennneeeeerensnnnnnseeesesssnnnnneesesssnnnnnseeeesssnnnnnsseeeesssnnnnnesesssnnnnnseseeersnnnnne 72
IAXELOAT 1ttt eteteseceeeeuesneeneensensensesessesnesnssnsensonsensennesesnssnsentsnsones 72
PN ELOAL 1ttt 73
BUrINE TIDTAIY v eoceoeercesceeveereneeseeeeeeeeeeeeneeeeenneeeeneeeneeneenneeneeeseeeeneees 73
LY s T 74
S B I D LY ettt ettt e st e st e bt e teentene 74
ST 74
B UD SEIIIIE vttt ettt eteeteeeteeseseteeseseseesensesessensesensenserensenseserneneens 75
FE oY T —— 76
S BT 76
S e 77|
ST et T — 77
FEINIOVEA L c.uvvieriiereeeeteeceteeeeteeeeteeeeteeeeteeeeseeenseeeesseensesensseenseseesssensesensseensesensseensene 78
Y N 79
TESEITAL tvvveenreeereeeteeeereeeereeenseeenseeenseeenseeenseeenseeenseeensesensesensesenseesnsesensesensesenseesnse 79
B ULECZC «unnuuununununnnnnnnsnnnnnnnnnsnnnsnsnnnsnsnsnsnsnnnnssssnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnene 80
TII) e euvieeeeeneienseseenseenseenseenseensesssensonssonssonsssnsesssensenssonseonseensesnsenssesssonssonsesnssonsens 80
D OIT YDA € eeeeveeeeeeeeeeeeetteeeeeeeeeessunneeeseesssssnnnseeseesssnnnsnssessesssnnnnssesesesssnnnnnseseessnnnne 81
O S LI I ueiutiiiuuiieneieiseeestessneeensesneeennsessnsesnnsesnssonsesnsesnnsessnsesnnsessnssssnsessnssonnnes 81

WNMLScript Reference

S S S S 88
T —— 88

P SCAPCSIIIIIE wcuveeeeeeeeeeeteeeeteeeeseeeeueeeeseseesesensessenesessessnnessnsessnnesensessnseesnsesonsessnnes 89
1S CAPES N ot 89
OASEIING it 90

B VL BrOWSEE TIDIAIY cvvvvvvovvoveoesvesscosresreneeseseeeseeseeeeeseneeeneenseeeeneeneeeseenseeneenseens 91
D ETV AT veteeeeeeeteeeteeteeeteeteeteetteeteesteeeseesesneeentesneenseenseeseenteentenneenneereenreeseentesneenen 91
BTV AT c.utiieeeireeeeeieeeeeetteeeeeteeeeeaeeeeeteeeeeesseeeeeasaaeeatraaeeasraeeenraaeeasraaeennraeeearreeeans 92

=0 PP 92

D LV et eutttteeeeeeeeeutetteeeeeeaansuereeeeeesaaasnnrneeeeesanannnrraseeesaaannnberseeeeanannrrreeeeeeenannrrrraaees 93
1EW C OMEEXT veeuriireieereeeiteeeiseeessseeeseeensssensseensesensssensssonsssensssessssensssosssseesssossssensns 93
O s e A Y e E 94

TS T T 94
DiIal0ES LIDIAIY vovevveveeieereeieet ettt eteteteteeeetetereretenesesesenerenesereseanas 94
DIOITIPE 1uvteiiurttiieitteiiittetiitteeieitteesebteesasttesesrtessssrtesasnnteesennessssntsesasstessanseessns 95
SNt s TR 95
AT T 95
B e e o 96
T TS (T o Yo Lot oy s WU T T T T T T — 99
MLScript non-standard library......c.cccccceiieeeiiieeniiremniirennneees 101
A B e s 101
Sy o LT 101
ELOSCIILE ittt sec et eaeensessessssnesnssnssnsensonsensensensesnesnssnsonsen 102

o3 a et E ¢ AR 102

ONLEXT-TTEE CTAIMIMALS veuvveveeererenerteteeetereteteteeeteteesteteesteresestetenesterenessesenessesens
T O 103
[.eX1Cal ETammMar. e et 103
DY NTACTIC TAINUTIAL «..vvevveuvereereereeeeereeseensesensesseeseesesseereensensersessessesseesesseensensensen 104
INUMETIC STINE TTAIMITIAL «vvvvenreeeererereereseneeresseseesesseseesesseneesessereesessensesessensens 104
(G IAMIMAL TIOTATION 1eutvitenteeitetettetenteteeteteuesteteuessestenesseneesesseneeresseseesessenserenes 104
D OUTCE TEXT 1eeureeureereeireeiseeseeseesseeseenseeseessaassansaensaeseessesssesssesssensesssessesssensaensens 107

WMLScript Reference

WMULScript lexical grammar.......oceeveveeveeeueeieieeieee e 108
W IMLSCIIPE SYNTACTIC STAITIMAT «eovveeetereneeeeteeeteteseetereeseeresestesenesteseseseeseseseesenenes 114
INUMETIC STINE STAMIMIAL et eventetiteneetietenteteeteteseeteterestetesessentesessessesessensesesseneeses 121
[URL Call SYINEAX 1vitetetiietetiietetiieteteitetetceteteestetesesesesesseseseasesesesseseseassesaneasesenes 123
e 2 —— 127|
LT 133|

WNMLScript Reference

Vi

Introduction

This guide introduces the Wireless Markup Language Script (WMLScript) and its
standard libraries. WMLScript is part of the Wireless Application Prototocol
(WAP) application layer, and you can use it to add client side procedural logic to
WML cards and decks. The language is based on ECMAScript, but it has been
modified to better support low bandwidth devices such as mobile phones. You can
use WMLScript with Wireless Markup Language (WML) to provide intelligence to
the clients, or you can use it as a stand-alone tool.

WMLScript has a defined bytecode and an interpreter reference architecture. In
addition, all WMLScript data is transmitted in binary format over wireless
networks. This allows you to use the narrowband communication channels to the
tull and keep the memory needed by the client to a minimum. Many advanced
features of the ECMAScript language have been dropped to make the language
smaller and easier to compile into bytecode, and easier to learn. For example,
WMLScript is a procedural language supporting locally installed standard libraries.

Benefits of using WMLScript

WMLScript was designed to provide general scripting capabilities to the WAP
architecture. Specifically, you can use WMLScript to complement WML, which is e
based on Extensible Markup Language (XML). It was designed for specifying
application content for narrowband devices like mobile phones. This content can
include text, images, selection lists, and so on. In addition, you can use simple
formatting to make the user interfaces more attractive and readable. However, all
the content is static and there is no way to extend the language without modifying
the WML itself. The following list contains some features that are not supported by
WML:

Checking the validity of user input.

Accessing facilities of the user agent. For example, on a mobile phone, allowing
the programmer to make phone calls, send messages, and add phone numbers
to the address book or access the SIM card.

Generating messages and dialogs locally, thus allowing alerts, error messages,
confirmations etc to be seen faster by the user.

Allowing extensions to the user agent software and configuring a user agent
after it has been deployed.

WNMLScript Reference Introduction

WMULScript was designed to overcome these limitations and to provide
programmable functionality that can be used over narrowband communication
links in clients with limited capabilities.

Many of the services that can be used with small mobile clients can be implemented
withWML. However, the human behavioural compatibility of scripting improves
the standard browsing and presentation facilities of WML. You can use scripting to
support more advanced user interface functions, add intelligence to the client,
provide access to the user agent and its peripheral functionality, and reduce the
bandwidth needed to send data between the server and client.

WMLScript bytecode interpreter

The textual format of WMLScript language is compiled into a binary format before
it can be interpreted by the WMLScript bytecode interpreter. The WMLScript
compiler encodes one WMLScript compilation unit into WMLScript bytecode. A
WMLScript compilation unit contains pragmas and any number of WMLScript
tunctions. The WMLScript compiler takes one compilation unit as input and
generates the WMLScript bytecode as its output.

Interpreter Architecture

The WMLScript interpreter takes WMLScript bytecode as its input and executes
encoded functions as they are called. The following figure contains the main parts
involved in WMLScript bytecode interpretation:

call http://vww. acne. cont scri pt #myFunc(" Test", 12)

www.acme.com/script

WML Script WML Script
Libraries Bytecode
Functions Functions

Interpreter
nyfunc()

State

Operand

P stack

Call stack Variables

General architecture of the WMLScript interpreter.

Introduction

WMLScript Reference

You can use the WMLScript interpreter to call and execute functions in a
compilation unit encoded as WMLScript bytecode. Each function specifies the
number of parameters it accepts and the instructions used to express its behaviour.
Thus, a call to a WMLScript function must specify the function, the function call
arguments and the compilation unit in which the function is declared. Once the
execution completes normally, the WMLScript interpreter returns the control and
return values to the caller.

Execution of a WMLScript function involves interpreting the instructions residing
in the WMLScript bytecode. While a function is being interpreted, the WMLScript

interpreter maintains the following state information:

IP (Instruction Pointer): This points to an instruction in the bytecode that is
being interpreted.

Variables: Maintenance of function parameters and variables.

Operand stack: Is used for expression evaluation and passing arguments
between the called functions and the caller.

Function call stack: The WMLScript function can call other functions in the
current or separate compilation unit or make calls to library functions. The
function call stack holds the information on the functions and their return
addresses.

Access control

WMULScript provides two mechanisms for controlling access to the functions in the
WMLScript compilation unit: an external keyword and a specific access control
pragma. Thus, the WMLScript interpreter must support the following behaviour:

External functions: Only functions specified as external can be called from
other compilation units.

Access control: Access to the external functions defined inside a compilation
unit is allowed from other compilation units that match the given access
domain and access path definitions.

Character Set

The WMLScript Interpreter must use only one character set (native character set)
for all of its string opreations. Transcoding between different character sets and
their encodings is allowed as long as the WMLScript string operations are
performed using only the native character set. The native character set can be
requested by using the Lang library function Lang.characterSet().

WNMLScript Reference Introduction

Typographical conventions

The following conventions are used in this guide.

Notation Explanation

Couri er Text that appears onscreen, program code, file and
directory names.

Courier Bold WML tag syntax, Uniform Resource Locators and
other types of specialized language.

Italic References to other guides and documents, new
terminology.

Related documents

The following documents contain additional information on the Nokia WAP
Toolkit and the Wireless Application Protocol. The web address provided after
each document specifies the Internet location where the document can be obtained.

Documents included in the Nokia WAP Toolkit
Nokia WAP Toolkit Getting Started

This guide provides basic information on the Nokia WAP Toolkit and WML,
and provides instructions on installing and using the product.

Nokia WAP Toolkit Developer’s Guide

This guide provides information on the Nokia WAP Toolkit and WML for
developers who want to create their own wireless services on the WAP
platform.

WML Reference

This guide provides reference information onWML. It introduces the WML
syntax and provides code examples.

Other references

Wireless Markup Language Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/ |

http://www.wapforum.org/

Introduction WMLScript Reference

WMLScript Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/|

WMLScript Standard Libraries Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/|

Wireless Application Protocol Architecture Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/|

Wireless Session Protocol Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/|

ISO 10646: Information Technology - Universal Multiple Octet Coded
Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane.

The Unicode Standard: Version 2.0.
http: //wwy uni code. org

Extensible Markup Language (XML).
W3C Proposed Recommendation, 10-February-1998, REC-xml-19980210.

RFC2068: Hypertext Transfer Protocol - HITP/1.1.

h'[tQZ//VWW\I.V\B.OI’g/ Pr ot ocol s/|

RFC2119: Key words for use in RFCs to Indicate Requirement Levels.
http://info.internet.isi.edu/in-notes/rfc/files/rfc2119.txt]

RFC2279 UTF 8 a tmnsformatzon format of Unicode amd 150 10646.

RFC2396: Uniform Resource Identifiers (URI): Generic Syntax

http://www.wapforum.org/docs/technical.htm
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/
http://www.unicode.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/
http://info.internet.isi.edu/in-notes/rfc/files/rfc2119.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc2279.txt

WNMLScript Reference Introduction

WMLScript core

This chapter provides an overview of the basic types, variables, expressions and
statements of WMLScript.

WMLScript and URLs

The World Wide Web is a network of databases and devices where three areas of
specification ensure widespread interoperability:

A unified naming model. Naming is implemented with Uniform Resource
Locators (URLs), which provide standard ways of naming any network
resource.

Standard protocols to transport information, for example, HTTP.
Standard content types, for example, HTML, WMLScript.

WMLScript assumes the same reference architecture as HTML and the World Wide
Web. The WMLScript compilation unit is named using URLs and can be retrieved
over standard protocols using HT'TP semantics, such as Wireless Session Protocol
(WSP). URLs and the character set used to specify URLs are defined in RFC2396.

In WMLScript, URLSs are used in the following situations:

When a user agent wants to make a WMLScript call. For more information, see
“IORL calls and parameter passing] on page f]

When specifying external compilation units. For more information, see
“External compilation units] on page

When specifying access control information. For more information, see

“Bcess controlf on page p9]
For detailed information on URL syntax, see “lURL call syntax] on page

Fragment anchors

WMLScript has adopted the HTML method of naming locations within a resource.
A WMLScript fragment anchor is specified by the document URL, followed by a
hash mark (#), followed by a fragment identifier. WMLScript uses fragment
anchors to identify individual WMLScript functions within a WMLScript

WNMLScript Reference WMLScript core

compilation unit. The syntax of the fragment anchor is specified in the following
section.

URL calls and parameter passing

A user agent can make a call to an external WMLScript function by providing the
following information using URLSs and fragment anchors:

URL of the compilation unit. For example,
http://ww. acme. conf nyScri pts. scr

Function name and parameters as the fragment anchor. For example,
t est Func(' Test %20ar gunent', -8)

The final URL with the fragment is:
http://ww. acrme. cond nyScri pts. scr#t est Func(' Test %20ar gunent', -8)

If the given URL denotes a valid WMLScript compilation unit then:

1 Access control checks are performed. The call fails if the caller does not have
the right to call the compilation unit.

2 The function name specified in the fragment anchor is matched against the
external functions in the compilation unit. The call fails if no match is found.

3 The parameter list in the fragment anchor is parsed and the given arguments
with their appropriate types (string literals as string data types, integer literals
as integer data types, and so on) are passed to the function. The call fails if the
parameter list has an invalid syntax.

Character escaping

URL calls can use both URL escaping to specify the URL and WMLScript string
escaping for any Unicode characters inside string literals. An URL is unescaped by
first applying the URL escaping rules and then WMLScript string literal escaping
rules for each string literal that is passed as a function parameter.

Relative URLs

WMLScript has adopted the use of relative URLs, as specified in RFC1808. The
base URL of a WMLScript compilation unit is the URL that identifies the
compilation unit.

WMLScript core WMLScript Reference

Lexical structure

This section describes the set of elementary rules for writing programs in
WMLScript.

Content types

The content types specified for the WMLScript compilation unit and its textual and
binary encoding are:

Textual form: text/vnd.wap.wmlscript.

Binary form: application/vnd.wap.wmlscriptc.

Case sensitivity

WMLScript is a case-sensitive language. Therefore you should capitalize the letters
correctly in all the language keywords, variables and function names.

White space and line breaks

WMLScript ignores spaces, tabs, newlines etc. that appear between tokens in
programs, except those that are part of string constants.

Syntax

WhiteSpaces :

WhiteSpace
WhiteSpaces WhiteSpace

WhiteSpace : : :

<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

LineTerminator : :

<LF>
<CR>
<CR><LF>

WNMLScript Reference WMLScript core

Use of semicolons

The following statements in WMLScript must be followed by a semicolon:

Empty statement. For details, see “Empty statement]’ on page

Expression statement. For details, see “Expression statement[on page

Variable statement. For details, see “Nariable statement| on page B2|
pag

Break statement. For details, see “Break statement]” on page p6]

Continue statement. For details, see “{Continue statement] on page pé]

Return statement. For details, see “Return statement| on page

Comments
WMLScript includes two comment constructions:
Line comments start with // and end at the end of the line.

Block comments consist of multiple lines starting with /* and ending with */.
Note that it is a WMLScript syntax error to have nested block comments.

Syntax

Comment : :

MultiLineComment
SingleLineComment

MultiLineComment : :

I * MultiLineCommentCharsop: * |

SingleLineComment : :

11 SingleLine Comment Charsop

Literals

WMLScript supports four types of literals: integer, floating-point, string and
boolean. In addition, invalid literal is used to denote an invalid value.

Integer literals

Integer literals can be represented in three different forms: decimal, octal and
hexadecimal integers.

10

WMLScript core WMLScript Reference

Syntax

DecimallntegerLiteral : :

0
NonZeroDigit DecimalDigitsop:

NonZeroDigit : :

One of
123456789

DecimalDigits : :

DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit : :

One of
0123456789

HexIntegerLiteral : :

Ox HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit : :

One of
0123456789 abcdef ABCDEF

OctallntegerLiteral : :

0 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit : :

One of
01234567

The minimum and maximum sizes for integer literals and values are specified in the
section “’ on page [18] Note that an integer literal that is not within the

specified value range results in a compile time error.

11

WNMLScript Reference WMLScript core

Floating-point literals

Floating-point literals can contain a decimal point as well as an exponent.
Syntax

DecimalFloatLiteral : :

DecimallntegerLiteral . DecimalDigitsop: ExponentPartop:
. DecimalDigits ExponentPartop
DecimallntegerLiteral ExponentPart

DecimalDigits : :

DecimalDigit
DecimalDigits DecimalDigit

ExponentPart : :

ExponentIndicator SignedInteger

ExponentIndicator : :

One of
e E

SignedInteger : :

DecimalDigits
+ DecimalDigits
— DecimalDagits

The minimum and maximum sizes for floating-point literals and values are specified
in the section “[Floating-point size|’ on page [L8} Note that a floating-point literal
that is not within the specified value range results in a compile time error and that a
floating-point literal underflow results in a floating-point literal zero.

String literals

A string is any sequence of zero or more characters enclosed by double (") or single
(') quotes.

12

WMLScript core

WMLScript Reference

Syntax

StringLiteral : :

" DoubleStringCharactersop: "
" SingleString Charactersop: '

Since some characters cannot be represented within strings, WMLScript offers
special escape sequences which represent these characters:

Sequence Character represented Unicode Symbol
\' Apostrophe or single quote \u0027 '
\" Double quote \u0022 "
\\ Backslash \u005C \
\/ Slash \u002F /
\b Backspace \u0008

\f Form feed \u000C

\n Newline \uO00A

\r Carriage return \u000D

\t Horizontal tab \u0009

\xhh The character with the encoding

specified by two hexadecimal digits
hh (Latin-1 1SO8859-1)

\ooo The character with the encoding
specified by the three octal digits 0oo
(Latin-1 ISO8859-1)

\ubhh The Unicode character with the
encoding specified by the four
hexadecimal digits hhhh.

Note that an escape sequence occurring within a string literal always contributes a
character to the string value of the literal, and is never interpreted as a line
terminator or as a quotation mark that might terminate the string literal.

Examples of valid strings

" Exanpl e"
"Specials: \x00 \' \b'
"Quote: \""

13

WNMLScript Reference WMLScript core

Boolean literals

A “truth value” in WMLScript is represented by a boolean literal. The two boolean
literals are t r ue and f al se.

Syntax

BooleanLiteral : :

true
fal se

Invalid literal

WMLScript supports a special invalid literal to denote an invalid value.

Syntax

InvalidLiteral : :

invalid

Identifiers

You can use identifiers to name and refer to three different elements of WMLScript:
variables, functions and pragmas. Note that identifier names cannot start with a
digit but can start with an underscore ().

Syntax

Identifier : :
IdentifierName but not ReservedWord

IdentifierName : :

Identifier Letter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter : :

One of
abcdefghij k!l mnopgrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ

14

WMLScript core WMLScript Reference

DecimalDigit : :

One of
01234567829

Examples of legal identifiers

ti meCf Day
speed
quality
HOVE_ADDRESS
var 0

_nmyNane

! Note: Uppercase and lowercase letters are distinct, which means that the
identifiers speed and Speed are different.

Examples of illegal identifiers

The compiler looks for the longest string of characters that make up a valid
identifier. Identifiers cannot contain any special characters except the underscore
(_)- WMLScript keywords and reserved words cannot be used as identifiers.

whi |l e

for

if
ny~name
$sys

123

3pi eces
take.this

Reserved words

WMLScript contains a set of reserved words that have special meanings and cannot
be used as identifiers. Examples of such words are

br eak
conti nue
fal se
true
whi | e

You can find the full list of reserved words in “fWMLScript grammar| on page

15

WNMLScript Reference WMLScript core

Name spaces

WMLScript supports name spaces for identifiers that are used for different
purposes. The following name spaces are supported:

Function names. For details, see “Functions[’ on page

Function parameters and variables. For details, see “Functions}’ on page p7]and
“Nariables and data types| on page [L6]

Pragmas. For details, see “Pragmas] on page

Note that you can use the same identifiers to specify a function name,
variable/parameter name or a name for a pragma within the same compilation unit:

use url nyTest "http://ww. acne. coni script”;

function nyTest (nyTest) {
var val ue = nyTest#myTest (nmyTest);
return val ue;

Variables and data types

This section discusses two important concepts of WMLScript language: variables
and internal data types. A variable is a name associated with a data value. You can
use variables to store and manipulate program data. WMLScript supports local
variables only when declared inside functions or passed as function parameters.

Variable declaration

Variable declaration is compulsory in WMLScript. It is done simply by using the
var keyword and a variable name. Variable names follow the syntax defined for all

the identifiers above in the section “[dentifiers| on page [L4} For example, the

following are legal variable declarations:

var x;
var price;
var Xx,y;

var size = 3;

Note that variables must be declared before you can use them. Initialization of
variables is optional. Uninitialized variables are automatically initialized to contain
an empty string ("").

Variable scope and lifetime

The scope of a WMLScript variable is the remainder of the function in which it has
been declared. Note that all variable names within a function must be unique and
that block statements are not used for scoping.

16

WMLScript core

WMLScript Reference

function priceCheck(givenPrice) {
if (givenPrice > 100) {
var newPrice = givenPrice;
} else {
newPrice = 100;
b
return newPrice;

b

The lifetime of a variable is the time between when the variable is declared and
when the function ends.

function foo() {

x = 1; /1 Error: usage before declaration
var X,Y;
if (x){
var (y); /1 Error: redeclaration
b

b

Variable access

Variables are accessible only within the function in which they have been declared.
Accessing the content of a variable is done by using the variable’s name:

var nyAge = 37,
var your Age = 63;
var ourAge = nyAge + your Age;

Variable type

WMLScript is a weakly typed language: the variables are not typed. Internally, the
following basic data types are supported: boolean, integer, floating-point and string.
In addition to these, a fifth data type invalid is specified to be used in cases where
an invalid data type is needed to distinguish it from the other internal data types.
Since these data types are supported only internally, you do not have to specify
variable types, and any variable can contain any type of data at any given time.
WMLScript will automatically try to convert between the different types as needed.

var flag = true; /1 Bool ean
var nunber = 12; /1 Integer
var tenperature = 37.7,; /1 Fl oat
nunber ="XI"; /1 String
var except =invalid; // Invalid
L-values

Some operators require that the left operand be a reference to a variable (L-value)
and not the variable value. Thus, in addition to the five data types supported by
WMLScript, a sixth type variable is used to specify that a variable name must be
provided.

result += 111; /'l += operator requires a variable

17

WNMLScript Reference WMLScript core

Type equivalency

WMLScript supports operations on different data types. All operators specify the
accepted data types for their operands. Automatic data type conversions are used to
convert operand values to the required data types.

For detailed information on operators, see “lOperators and expressions| on page
p , P p pag

For detailed information on data type conversions, see “[Automatic data type
fonversion rules| on page

Numeric values

WMLScript supports two different numeric variable values: integer and floating-
point. Note that in cases where the value can be either an integer or a floating-point,
a more generic term number is used instead.

You can initialize variables with integer and floating-point literals, and you can use
several operators to modify the variable values during the runtime. Conversion
rules between integer and floating-point values are specified in the chapter
“lAutomatic data type conversion rulesf on page

var pi = 3.14;

var length = 0;

var radius = 2.5;

I ength = 2*pi *radi us

Integer size

The size of the integer is 32 bits (complement of two), meaning that the value range
supported for integer values goes from —2147483648 to 2147483647. You can get
these values during the runtime by using the following Lang library functions.

Lang. maxl nt () Maximum representable integer value.

Lang. minint () Minimum representable integer value.

Floating-point size
WMLScript supports 32-bit single precision floating-point format:
Maximum value: 3.40282347E+38.

Minimum positive non-zero value: 1.17549435E-38 or smaller (the normalized
precision at least must be supported).

18

WMLScript core

WMLScript Reference

You can get these values during the runtime by using the following Float library
functions:

Fl oat . maxFl oat () Maximum representable floating-point value
supported.

Fl oat. m nFl oat () Smallest positive non-zero floating-point value
supported.

The special floating-point number types are handled by using the following rules:

If an operation results in a floating-point number that is not a finite real
number (not a number, positive infinity etc.) supported by the single precision
floating-point format, then the result is ani nval i d value.

If an operation results in a floating-point underflow the result is zero (0.0).

Negative and positive zero are equal and undistinguishable.

String values

WMLScript supports strings that can contain letters, digits, special character, and so
on. You can initialize variables with string literals, and you can manipulate string
values with WMLScript operators and functions specified in the standard String
library described on page %'of this guide.

var msg = "Hello";
var len = String.|ength(nsg);
nsg = nmeg + 'World!';

Boolean values

You can use Boolean values to initialize or assign a value to a variable or in
statements which require a boolean value as one of the parameters. A Boolean value
can be a literal or the result of a logical expression.

var truth
var lie

true;
I'truth;

Operators and expressions

The following sections describe the operators supported by WMLScript and how
they can be used to form complex expressions.

Assignment operators

WMLScript offers several ways to assign a value to a variable. The simplest is the
regular assignment (=), but assignments with operations are also supported:

19

WNMLScript Reference WMLScript core

Operator Operation
= assign
+= add (numbers)/concatenate (strings) and assign

-= subtract and assign

*= multiply and assign

/= divide and assign

di v= divide (integer division) and assign

% remainder (the sign of the result equals the sign of the

dividend) and assign

<<= bitwise left shift and assign

>>= bitwise right shift with sign and assign
>>>= bitwise right shift zero fill and assign
&= bitwise AND and assign

A= bitwise XOR and assign

| = bitwise OR assign

Note that assignment does not necessarily imply sharing of structure, nor does
assignment of one variable change the binding of any other variable.

var a = "abc";
var b = a;
b = "def"; /1 Value of a is "abc"

Arithmetical operators

WMLScript supports all the basic binary arithmetical operations:

Operator Operation

+ add (numbers)/concatenation (strings)
- subtract

* multiply

20

WMLScript core WMLScript Reference

Operator Operation
/ divide
div integer division

In addition to these, the following set of more complex binary operations are

supported:

Operator Operation

% remainder, the sign of the result equals the sign of the
dividend

<< bitwise left shift

>> bitwise right shift with sign

>>> bitwise right shift with zero fill

& bitwise AND

| bitwise OR

A bitwise XOR

The basic unary operations are:

Operator Operation
+ plus
- minus

— pre-or-post decrement
++ pre-or-post increment

~ bitwise NOT

Examples of arithmetical operators:

var y 1/ 3;
var x = y*3+(++b);

21

WNMLScript Reference WMLScript core

Logical operators

WMLScript supports the following basic logical operations:

Operator Operation

&& logical AND

|l logical OR

! logical NOT (unary)

The logical AND operator evaluates the first operand and tests the result:

If the result is f al se, the result of the operation is f al se and the second
operand is not evaluated.

If the first operand evaluates to t r ue, the result of the operation is the result of
the evaluation of the second operand.

If the first operand evaluates to i nval i d, the second operand is not evaluated
and the result of the operation isi nval i d.

Similarly, the logical OR evaluates the first operand and tests the result:

If the result is t r ue, the result of the operation is t r ue and the second operand
is not evaluated.

If the first operand evaluates to f al se, the result of the operation is the result
of the evaluation of the second operand.

If the first operand evaluates to i nval i d, the second operand is not evaluated
and the result of the operation isi nval i d.

weAgree = (i AnRi ght &&% youAreRight) ||
(!'i ArRi ght && !youAreRi ght);

WMLScript requires a boolean value for logical operations. Therefore, automatic
conversions from other types to boolean type and vice versa are performed.

Note that if the value of the first operand AND or OR isi nval i d, the second
operand is not evaluated and the result of the operand isi nval i d:

var a = (1/0) || foo(); Il result: invalid, no call to foo()
var b =true || (1/0); /] true
var ¢ = false || (1/0); /1 invalid

String operators

WMLScript supports string concatenation as a built-in operation. The + and +=

operators used with strings perform a concatenation on the strings. Other string
operations are supported by the standard String library, described on page [3]of
this guide.

22

WMLScript core

WMLScript Reference

var str = "Beginning" + "End";
var chr = String.charAt(str, 10); /1 chr = "E"

Comparison operators

WMLScript supports all the basic comparison operations:

Operator Operation

< less than

<= less than or equal

== equal

>= greater than or equal
> greater than

I = inequality

Comparison operators use the following rules:
Boolean: t r ue is larger than f al se.
Integer: Comparison is based on the given integer values.
Floating-point: Comparison is based on the given floating-point values.

String: Comparison is based on the order of character codes of the givenstring
values. Character codes are defined by the character set supported by the
WMLScript Interpreter.

Invalid: Tf at least one of the operands isi nval i d then the result of the
comparison is i nval i d.

Examples of comparison operators:

var res
var val

(myAnount > your Anount) ;
((1/0) == invalid); /1 val = invalid

Array operators

WMLScript does not support arrays as such. However, the standard String library
supports functions by which array-like behaviour can be implemented using
strings. A string can contain elements separated by a specified separator. For this
purpose, the String library contains functions which allow you to create and
manage string arrays. The following is an example of an array operator:

function dumy() {
var str = "Mary had a little |amb";
var word = String.elenent At (str,4,"");

23

WNMLScript Reference WMLScript core

Comma operator

WMLScript supports the comma (,) operator which allows you to combine
multiple evaluations in one expression. The result of the comma operator is the
value of the second operand:

for (a=1, b=100; a < 10; a++, b++) {
...other functions ...

b

Note that the commas used in the function call to separate parameters, and in the
variable declarations to separate multiple variable declarations, and are therefore
not comma operators. In these cases, the comma operator must be placed inside the
parenthesis:

var a=2;

var b =3, c=(a, 3);
nyFunction("Nane", 3*(b*a,c)); // Two paraneters: "Name", 9

Conditional operator
WML supports the conditional (?:) operator which takes three operands:

The operator selectively evaluates one of the given two operands based on the
boolean value of the first operand.

If the value of the first operand (condition) is t r ue then the result of the
operation is the result of the evaluation of the second operand.

If the value of the first operand is f al se ori nval i d then the result of the
operation is the result of the evaluation of the third operand.

The following is an example of a conditional operator:
nmyResult = flag ? "OFf" : "On (value=" + level + ")";

Note that the conditional operator behaves like an if statement. The third operand
is evaluated if the evaluation of the condition results in f al se ori nval i d.

typeof operator

As stated before, although WMLScript is a weakly typed language, internally the
following basic data types are supported: boolean, integer, floating-point, string and
invalid. The typeof operator returns an integer value that describes the type of the
given expression. The possible results are:

Type Code
Integer 0
Floating-point 1

24

WMLScript core

WMLScript Reference

Type Code
String 2
Boolean 3
Invalid 4

The typeof operator does not try to convert the result from one type to another, but
returns the type as it is after the evaluation of the expression.

var str = "123";
var nyType = typeof str; Il myType = 2

isvalid operator

You can use this operator to check the type of the given expression. It returns the
boolean value f al se if the type of the expression is invalid; otherwise t r ue is
returned. The zsvalid operator does not try to convert the result from one type to
another, but returns the type as it is after the evaluation of the expression.

var str = "123";

var ok = isvalid str; /Il true
var tst = isvalid (1/0); /1 false
Expressions

WMULScript supports most of the expressions supported by other programming
languages. The simplest expressions are constants and variable names, which simply
evaluate to either the value of the constant or the variable.

567

66. 77

"This is too sinple"
' This works too'
true

myAccount

You can define more complex expressions by using simple expressions with
operators and function calls.

myAccount + 3
(a + b)/3
initial Val ue + next Val ue(nyVal ues);

Expression bindings

The following table contains all the operators supported by WMLScript. It also
contains information on operator precedence and the operator associativity (left-to-
right (L) or right-to-left (R)):

25

WMLScript Reference

WMLScript core

Precedence | Associativity | Operator | Operand Result type Operation performed
types

1 R ++ number number* pre- or post-increment (unary)

1 R -- number number* pre- or post-decrement (unary)

1 R + number number* unary plus

1 R - number number* unary minus (negation)

1 R ~ integer integer* bitwise NOT (unary)

1 R ! boolean boolean* logical NOT (unary)

1 R typeof any integer return internal data type

1 R isvalid any boolean check for validity (unary)

2 L numbers number* multiplication

2 L / numbers floating-point™* division

2 L div integers integer* integer division

2 L % integers integer* remainder

3 L - numbers number* subtraction

3 L + numbers or number or addition (numbers) or string
strings string* concatenation

4 L << integers integer* bitwise left shift

4 L >> integers integer* bitwise right shift with sign

4 L >>> integers integer* bitwise right shift with zero fill

5 L <, <= numbers or boolean* less than, less than or equal
strings

5 L >, >= numbers or boolean* greater than, greater than or
strings equal

6 L == nuplbers or boolean* equal (identical values)
strings

6 L 1= nuglbers or boolean* not equal (different values)
strings

7 L & integers integer* bitwise AND

8 L A integers integer* bitwise XOR

9 L | integers integer* bitwise OR

10 L && booleans boolean* logical AND

26

WMLScript core

WMLScript Reference

Precedence | Associativity | Operator | Operand Result type Operation performed
types
11 L I booleans boolean* logical OR
12 R 2 boolean, any any™ conditional expression
13 R = variable, any any” assignment
13 R =, -= variable, number® assignment with numeric
number operation
13 R /= variable, floating-point assignment with numeric
number operation
13 R Y%=, div= variable, integer | integer assignment with integer
operation
13 R += variable, number or assignment with addition or
number or string™ concatenation
string
13 R <<=, >>=, variable, integer | integer* assignment with bitwise
>>>= &=, operation
A= |=
14 L s any any multiple evaluation
* The operator can return an i nval i d value if a data type conversion fails or one
of the operands isi nval i d.
Functions

A WMLScript function is a named part of the WMLScript compilation unit that
you can call to perform a specific set of statements and to return a value. The
following sections describe how you can declare and use WMLScript functions.

Declaration

You can use the function declaration to declare a WMLScript function name
(Identifier) with the optional parameters (FormalParameterList) and a block
statement that is executed when the function is called. All functions have the

following characteristics:

Function declarations cannot be nested.

Function names must be unique within one compilation unit.

All parameters to functions are passed by value.

27

WNMLScript Reference

Function calls must pass exactly the same number of arguments to the called
function as specified in the function declaration.

Function parameters behave like local variables that have been initialized before

the function body (block of statements) is executed.

A function always returns a value. By defaul, it is an empty string ("").
However, you can use a return statement to specify other return values.

Note that the functions in WMLScript are not data types but a syntactical feature of

the language.

Syntax

FunctionDeclaration :

ext er noy: f uncti on Identifier (FormalParameterListop)) Block ; opt

FormalParameterList :

Identifier
FormalParameterList , Identifier

You can use the optional ext er n keyword to specify that a function is to be
externally accessible. External functions can be called from outside the
compilation unit in which they are defined.

Identifier is the name specified for the function.

The optional FormalParameterList is a list of argument names separated by
commas.

Block is the body of the function that is executed when the function is called
and the parameters have been initialized by the passed arguments.

Examples of function declaration

function currencyConverter (currency, exchangeRate) {
return currency*exchangeRat e;

h
extern function testlt() {
var USD = 10;
var FIM = currencyConverter(USD, 5.3);

b

Function calls

The way you call a function depends on where the called (target) function is
declared. The following sections describe the three function calls available in

28

WMLScript core

WMLScript core

WMLScript Reference

WMLScript: local script function call, external function call and library function
call.

Local script functions

Local script functions are defined inside the same compilation unit. You can call
them simply by providing the function name and a list of arguments separated by
commas. Note that the number of arguments must match the number of parameters
accepted by the function.

Syntax

LocalScriptFunctionCall :

FunctionName Arguments

FunctionName :

Identifier

Arguments :

0
(ArgumentList)

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

Note that you can call functions inside the same compilation unit even before the
function has been declared:

function test2(param {
return testl1(param-l);

b

function testl(val) {
return val *val ;

b

External functions

External function calls must be used when the called function is declared in an
external compilation unit. The external function call is similar to a local function
call but it must be prefixed with the name of the external compilation unit.

29

WNMLScript Reference WMLScript core

Syntax

ExternalScriptFunctionCall :

ExternalScriptName # FunctionName Arguments

ExternalScriptName :
Identifier

The pragma use url is used to specify the external compilation unit. It defines the
mapping between the external unit and a name that you can use within function
declarations. This name and the hash mark (#) are used to prefix the standard
function call syntax:

use url OQtherScript "http://ww.acme. coni script"”;

function test3(param {
return O herScri pt#t est 2(param+l);

b

Library functions

Library function calls must be used when the called function is a WMLScript
standard library function. For more information on the standard libraries, see
“IWMLScript standard libraries]’ on page

Syntax

LibraryFunctionCall :

LibraryName . FunctionName Arguments

LibraryName :
Identifier

You can call a library function by prefixing the function name with the name of the
library and the period character (.):

function test4(param {
return Float.sqrt(Lang. abs(paran) +1);
h

30

WMLScript core WMLScript Reference
Default return value
The default return value for a function is an empty string (""). Return values of
functions can be ignored, that is, the function call can be a statement:
function test5() {
test4(4);
b
Statements

WMLScript statements consist of expressions and keywords used with the
appropriate syntax. A single statement can span multiple lines, and multiple
statements can occur on a single line.

The following sections describe the statements available in WMLScript: empty
statement, expression statement, block statement, break, continue, for, if...else,
return, var, while.

Empty statement

Empty statement is a statement used in cases where a statement is needed but no
operation is required.

Syntax

EmptyStatement :

Example of empty statement

while (!poll(device)) ; // Wait until poll() is true

Expression statement

Expression statements are used to assign values to variables, calculate mathematical
expressions, make function calls, and so on.

Syntax

ExpressionStatement :

Expression ;

31

WNMLScript Reference WMLScript core

Expression :

AssignmentExpression
Expression , AssignmentExpression

Examples of expression statement

str = "Hey " + yourNane,
val 3 = prevval + 4;
count er ++;

myVal uel = counter, nyValue2 = val 3;
alert("Watch out!");
retVal = 16*Lang. max(val 3, counter);

Block statement

A block statement is a set of statements enclosed in brackets. You can use it
anywhere a single statement is needed.

Syntax

Block :

{ StatementListop: }

StatementlList :

Statement
StatementList Statement

Example of block statement

{
var i = 0;
var x = Lang. abs(b);
popUp(" Renmenber!");
}

Variable statement

The variable statement declares variables with an initialization. The initialization is
optional: variables are initialized to an empty string ("") by default. The scope of
the declared variable is the rest of the current function.

32

WMLScript core

WMLScript Reference

Syntax

VariableStatement :

var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :

Identifier VariableInitializerop

Variablelnitializer :
= ConditionalExpression
Identifier is the variable name and can be any legal identifier.

Conditional Expression is the initial value of the variable and can be any legal
expression. This expression, or the default initialization to an empty string is
evaluated every time the variable statement is executed.

! Note: Variable names must be unique within a single function.

Examples of variable statements

function count(str) {

var result = 0; /1 Initialized once
while (str I="") {
var ind = 0; /1 Initialized every tinme
/1 modify string
b
return result
b
function exanpl e(paran) {
var a = 0;
if (param> a) {
var b = a+l; /1 Variables a and b can be used
} else {
var ¢ = a+2; /1 Variables a, b and ¢ can be used
b
return a; /1 Variables a, b and ¢ are accessible

33

WNMLScript Reference WMLScript core

If statement

The if statement specifies conditional execution of statements. It consists of a
condition and one or two statements, and executes the first statement if the
specified condition is true. If the condition is false, the second (optional) statement
is executed.

Syntax

IfStatement :

i f (Expression) Statement el se Statement
i f (Expression) Statement

Expression (condition) can be any WMLScript expression that evaluates
directly or after conversion to a boolean or invalid value.

— If the condition evaluates to t r ue, the first statement is executed.

— If the condition evaluates to f al se ori nval i d, the second (optional) el se
statement is executed.

Statement can be any WMLScript statement, including another (nested) i f
statement. Note that el se is always tied to the closesti f .

Example of if statement
if (sunShines) {
nyDay = "Cood";
goodDays++;

} else
nmyDay = "Ch well...";

While statement

The while statement creates a loop that evaluates an expression and, if it is t r ue,
executes a statement. The loop repeats as long as the specified condition is t r ue.

Syntax

WhileStatement :
whi | e (Expression) Statement

Expression (condition) can be any WMLScript expression that evaluates
directly or after conversion to a boolean or invalid value. The condition is
evaluated before each execution of the loop statement.

— If the condition evaluates to t r ue, the Statement is performed.

34

WMLScript core WMLScript Reference

— If the condition evaluates to f al se ori nval i d, execution continues with
the statement following Statement.

Statement is executed as long as the condition evaluates to t r ue.

Example of while statement

var counter = 0;

var total =0

while (counter < 3) {
count er ++;

total += c;

b

For statement

You can use the for statement to create loops. It consists of three optional
expressions enclosed in parentheses and separated by semicolons followed by a
statement executed in the loop.

Syntax

ForStatement :

for (Expressione: ; Expressionep: ; Expressionop) Statement
for (var VariableDeclarationList ; Expressionop: ; Expressionop) Statement

The first Expression or VariableDeclarationList (initializer) is typically used to
initialize a counter variable. This expression may optionally declare new
variables with the var keyword. The scope of the defined variables is the rest of
the function.

The second Expression (condition) can be any WMLScript expression that
evaluates directly or after conversion to a boolean or invalid value. The
condition is evaluated on each pass through the loop. If the condition evaluates
to t r ue, the Statement is performed. This conditional test is optional. If
omitted, the condition always evaluates to t r ue.

The third Expression (increment expression) is generally used to update or
increment the counter variable. Statement is executed as long as the condition
evaluates to t r ue.

Example of for statement

for (var index = 0; index < 100; index++) {
count += index;
nmyFunc(count);

h

35

WNMLScript Reference

WMLScript core

Break statement

The break statement terminates the current while or for loop and continues the
program execution from the statement following the terminated loop. Note that it
is a WMLScript syntax error to use the break statement outside a while or a for

statement.

Syntax

BreakStatement :

break ;

Example of break statement

function testBreak(x) {
var index = 0;
while (index < 6) {
if (index == 3) break;
i ndex++;
b
return i ndex*x;

b

Continue statement

The continue statement terminates execution of a block of statements in a while or
for loop and continues execution of the loop with the next iteration. Note that the

continue statement does not terminate the execution of the loop:
In a while loop, it jumps back to the condition.

In a for loop, it jumps to the update expression.

Note that it is a WMLScript syntax error to use the continue statement outside a

while or a for statement.

Syntax

ContinueStatement :

conti nue;

Example of continue statement

0;
0,

var i ndex
var count

36

WMLScript core

WMLScript Reference

Libraries

while (index < 5) {
i ndex++;
if (index == 3)
conti nue;
count += index;

Return statement

You can use the return statement inside the function body to specify the function
return value. If no return statement is specified or none of the function return
statements are executed, the function returns an empty string by default.

Syntax

ReturnStatement :

return Expressionopt;

Example of return statement

function square(x) {
if (!(Lang.isFloat(x))) return invalid;
return x * x;

WMLScript supports the use of libraries. Libraries are named collections of
functions that belong together logically. You can call these functions by using a dot
(.) separator between the library name and the function name with parameters.

The following example illustrates a library function call:

function dumy(str) {
var i = String.elementAt(str,3," ");

b

Standard libraries

The WMLScript standard libraries are described in more detail in “
ktandard libraries| on page

37

WNMLScript Reference WMLScript core

Pragmas

WMULScript supports the use of pragmas that specify compilation unit level
information. Pragmas are specified at the beginning of the compilation unit before
any function declaration. Note that all pragmas start with the keyword use and are
followed by pragma-specific attributes.

Syntax

CompilationUnit :

Pragmasop: FunctionDeclarations

Pragmas :

Pragma
Pragmas Pragma

Pragma :

use PragmaDeclaration;

PragmaDeclaration :

ExternalCompilationUnitPragma
AccessControlPragma
MetaPragma

The following sections contain more information on the pragmas supported.

External compilation units

You can access WMLScript compilation units by using an URL. Thus, you can
access each WMLScript function by specifying the URL of the WMLScript
resource and its name. Note that the use url pragma must be used when calling a
function in an external compilation unit.

Syntax

ExternalCompilationUnitPragma :
url Identifier StringLiteral

The use url pragma specifies the location (URL) of the external WMLScript
resource and gives it a local name. You can then use this name inside the function
declarations to make external function calls.

38

WMLScript core

WMLScript Reference

use url OherScript "http://ww. acnme. coni app/ script";

function test(parl, par2) {
return O her Scri pt#check(par1-par?2);

b

The behavior of this example is the following:
1 The pragma specifies an URL for a WMLScript compilation unit.

2 The function call loads the compilation unit by using the given URL:
http://ww. acne. conf app/ scri pt.

3 The content of the compilation unit is verified and the specified function check
is executed.

The use url pragma has its own name space for local names. However, the local
names must be unique within one compilation unit. The following URLs are
supported:

Uniform Resource Locators without a hash mark (#) or a fragment identifier.
The schemes supported are specified in the Wireless Application Environment
Specification. For detailed information on URLs, refer to RFC2396.

Relative URLs without a hash mark (#) or a fragment identifier. The base URL
is the one identifying the current compilation unit. For detailed information on
relative URLs, refer to RFC2396.

The given URL is escaped according to the URL escaping rules. No compile time
automatic escaping, URL syntax or URL validity checking is performed.

Access control

A WMLScript compilation unit can protect its content by using an access control
pragma. Access control is performed before any external functions are called. Note
that it is a WMLScript syntax error for a compilation unit to contain more than one
access control pragma.

Syntax

AccessControlPragma :

access AccessControlSpecifier

AccessControlSpecifier :

domai n StringLiteral
pat h StringLiteral
donai n StringLiteral path StringLiteral

39

WNMLScript Reference WMLScript core

Every time an external function is invoked, an access control check is performed to
determine whether the destination compilation unit allows access from the caller.
The access control pragma specifies the domain and path attributes against which
the access control checks are performed. If a compilation unit has a domain and/or
path attribute, the referring compilation unit’s URL must match the values of the
attributes. Matching is done as follows: the access domain is suffix-matched against
the domain name portion of the referring URL, and the access path is prefix-
matched against the path portion of the referring URL. Domain and path attributes
follow the URL capitalization rules.

Domain suffix matching is done using the entire element of each sub-domain
and must match each element exactly. For example, www. acmeconp. com
matches acmeconp. com but does not match conp. com

Path prefix matching is done using entire path elements and each element must
match exactly. For example, / X/ Y matches / X, but does not match / Xz.

The domain attribute defaults to the current compilation unit’s domain. The
path attribute defaults to the value “/ ”.

To simplify the development of applications that may not know the absolute path
to the current compilation unit, the path attribute accepts relative URLs. The user
agent converts the relative path to an absolute path and then performs prefix
matching against the path attribute.

By default, access control is disabled.

Example of access control
Given the following access control attributes for a compilation unit:
use access domain "acne.coni' path "/docs";

The following referring URLs would be allowed to call the external functions
specified in this compilation unit:

acme. coni docs/ t echni cal . cgi
www. acne. cont docs/ nmar ket i ng. cgi
www. acne. cont docs/ denps/ packages. cgi ?x=123&y=456

The following referring URLs would not be allowed to call the external functions:

www. t est . net/ docs
www. acne. com i nt ernal / foo. wni

Meta information

You can use also pragmas to specify compilation unit-specific meta information.
Meta information is specified with property names and values. Note that user
agents are not required for the meta data to be acted upon.

40

WMLScript core WMLScript Reference

Syntax

MetaPragma :

net a MetaSpecifier

MetaSpecifier :

MetaName
MetaHttpEquiv
MetaUserAgent

MetaName :

name MetaBody

MetaHttpEquiv :

http equi v MetaBody

MetaUserAgent :

user agent MetaBody

MetaBody :
MetaPropertyName MetaContent MetaSchemeop:
Meta pragmas have three attributes:
Property name specifies a name for the meta element.
Content specifies the value of the property.

The optional scheme specifies a form or structure that may be used to interpret
the property value. The values vary depending on the type of meta data.

The attribute values are string literals.

Name

The name meta pragma specifies meta information intended for use by the web
servers. The user agent ignores any meta data named with this attribute.

use neta nane "Created" "18-March-1998";

41

WNMLScript Reference WMLScript core

HTTP equiv

The HTTP equiv meta pragma specifies meta information indicating that the
property should be interpreted as an HTTP header. Meta data named with this
attribute is converted to a WSP or HTTP response header if the compilation unit is
compiled before it arrives at the user agent.

use neta http equiv "Keywords" "Script, Language";

User agent

The user agent meta pragma specifies meta information intended for use by the user
agents.

use neta user agent "Type" "Test";

42

Automatic data type
conversion rules

In some cases, WMLScript operators require specific data types as their operands.
WMLScript supports automatic data type conversions to meet the requirements of
these operators. The following sections describe the different conversions in detail.

General conversion rules

As stated previously, WMLScript is a weakly typed language, and the variable
declarations do not specify a type. However, internally the language handles the
following data types:

Boolean: represents a boolean value true or false.
Integer: represents an integer value.

Floating-point: represents a floating-point value.
String: represents a sequence of characters.

Invalid: represents a type with a single value i nval i d.

A variable can contain one of these types of value. WMLScript provides an operator
rypeof, which can be used to determine the current type of a variable or any
expression. The typeof operator performs no conversions.

Each WMLScript operator accepts a predefined set of operand types. If the
operands provided are not of the right data type, an automatic conversion takes
place. The following sections discuss the legal automatic conversions between two
data types.

! Note: Data type conversions may reduce precision.

43

WMLScript Reference Automatic data type conversion rules

Conversions to string

Legal conversions of other data types to string are:

An integer value is converted to a string of decimal digits that follows the
numeric string grammar rules for decimal integer literals. For more

information, see “Numeric string grammar|” on page

A floating-point value is converted to a string representation that follows the
numeric string grammar rules for decimal floating-point literals. The resulting
string representation is equal to the original value. For example, . 5 can be
represented as 0. 5 or . 5e0.

The boolean value t r ue is converted to the string "t r ue" and the value f al se
to the string " f al se".

| nval i d cannot be converted to a string value.

Conversions to integer

Legal conversions of other data types to integer are:
A string can be converted into an integer value only if it contains a decimal
representation of an integer number. For more information, see “
frng srammar] on pege
A floating-point value cannot be converted to an integer value.
The boolean value t r ue is converted to the integer value 1, f al se to 0.

I nval i d cannot be converted to an integer value.

Conversions to floating-point
Legal conversions of other data types to floating-point are:

A string can be converted into a floating-point value only if it contains a valid
representation of a floating-point number. For more information, see

“Numeric string grammar]’ on page

An integer value is converted to a corresponding floating-point value.

The boolean value t r ue is converted to a floating-point value 1.0, f al se to 0.0.
I nval i d cannot be converted to a floating-point value.

The conversions between a string and a floating-point value must be transitive
according to the ability of the data types to accurately represent the value. Note
that a conversion can reduce precision.

44

Automatic data type conversion rules WMLScript Reference

Conversions to boolean

Legal conversions of other data types to boolean are:

The empty string (" ") is converted to f al se. All other strings are converted to
true.

The integer value 0 is converted to f al se. All other integer numbers are
converted to t r ue.

The floating-point value 0.0 is converted to f al se. All other floating-point
numbers are converted to t r ue.

I nval i d cannot be converted to a boolean value.

Conversions to invalid

There are no legal conversion rules for converting any of the other data types to an
invalid type. I nval i d is either a result of an operation error or a literal value. In
most cases, an operator that has an i nval i d value as an operand evaluates to

i nval i d. For the exceptions to this rule, see “|Conditional operator| on page
“’ on page P4]and “fisvalid operatorf on page

Summary
The following table summarizes the legal conversions between data types.
Given/Used as | Boolean | Integer Floating-point String
Boolean true - 1 1.0 "true"
Boolean false - 0 0.0 "false"
Integer O false - 0.0 "0"
Any other integer true - floating-point value of | string representation of a decimal
number integer
Floating-point 0.0 | false Illegal - implementation-dependent string
representation of a floating-point
value, e.g. "0.0”
Any other floating- | true Illegal - implementation-dependent string
point representation of a floating-point
value
Empty string false Illegal Illegal -
Non-empty string | true integer value of its floating-point value of | —
string representation | its string representation
or illegal or illegal
Invalid Illegal Illegal Illegal Illegal

45

WMLScript Reference

Automatic data type conversion rules

Operator data type conversion rules

The conversion rules just discussed specified when a legal conversion is possible
between two data types. WMLScript operators use these rules, the operand data
type and values to select the operation to be performed (in cases where the type is
used to specify the operation), and to perform the data type conversions needed for

the selected operation. The rules are specified as follows:

The additional conversion rules are specified in steps. Each step is performed in
the given order until the operation and the data types for its operands are
specified and the return value defined.

If the type of the operand value matches the required type, the value is used as
such.

If the operand value does not match the required type, a conversion from the
current data type to the one required is attempted:

— Legal conversion: A conversion can be done only if the general conversion
rules specify a legal conversion from the current operator data type to the
one required.

— Illegal conversion: Conversion cannot be done if the general conversion
rules do not specify a legal conversion from the current type to the type
required.

If a legal conversion rule is specified for the operand (unary) or for all the
operands then the conversion is performed, the operation is performed on the
converted values, and the result returned is the value of the operation. If a legal
conversion results in an i nval i d value, then the operation returns an i nval i d
value.

If no legal conversion is specified for one or more of the operands, no
conversion is performed, and the next step in the additional conversion rules is
performed.

The following table contains the operator data type conversion rules based on the
operand data types given.

Operand types | Additional conversion rules Examples
Boolean(s) If the operand is boolean or can be true 3.4 => bool ean
converted into a boolean value, then 1 & 0 => bool ean
perform a boolean operation and return its "A" || "" => bool ean
value, otherwise return i nval i d. 142 => bool ean
linvalid => invalid
3 & invalid =>invalid
Integer(s) If the operand is an integer or can be "7" << 2 => integer
converted into an integer value, then true << 2 => integer
perform an integer operation and return its 7.2 >> 3 =>invalid
value, otherwise return i nval i d. 2.1 div 4 =>invalid

46

Automatic data type conversion rules

WMLScript Reference

Operand types | Additional conversion rules Examples
Floating-point(s) If the operand is floating-point or can be -
converted into a floating-point value, then
perform a floating-point operation and
return its value, otherwise return i nval i d.
String(s) If the operand is a string or can be converted -
into a string value, then perform a string
operation and return its value, otherwise
return i nval i d.
Integer or If the operand is an integer or can be +10 => integer
floating-point converted into an integer value, then -10.3 => fl oat
(unary) perform an integer operation and return its -"33" => integer
value. +"47.3" = fl oat
+true => integer 1
If the operand is a floating-point or can be -fal se => integer 0
converted into a floating-point value, then -"ABC' => invalid
perform a floating-point operation and -"9e9999" => invalid
return its value, otherwise return i nval i d.
Integers or If at least one of the operands is a floating- 100/10.3 => float
floating-points point, then convert the remaining operand 33*44 => integer
into a floating-point value, perform a "10"*3 => integer
floating-point operation, and return its 3.4*"3.4" => float
value. "10"-"2" => integer
"2.3"*"3" => float
If the operands are integers or can be 3.2*"A" =>invalid
converted into integer values, then perform -9%"9e999" => invalid
an integer operation and return its value. invalid*l => invalid
If the operands can be converted into
floating-point values then perform a
floating-point operation and return its value,
otherwise return i nval i d.
Integers, If at least one of the operands is a string then 12+3 => integer
floating-points or | convert the remaining operand into a string 32.4+65 => float
strings value, perform a string operation, and return "12"+5.4 => string
its value. 43.2<77 => float
"Hey"<56 => string
If at least one of the operands is a floating- 2.7+"4.2" => string
point, then convert the remaining operand 9. 9+true => f1 oat
into a floating-point value, perform a 3<fal se => integer
floating-point operation, and return its "A'+invalid =>invalid
value.
If the operands are integers or can be
converted into integer values, then perform
an integer operation and return its value,
otherwise return i nval i d.
Any Any type is accepted. a =37.3 => float
b = typeof "s" => string

47

WMLScript Reference Automatic data type conversion rules

Summary of operators and conversions

The following sections summarize how the conversion rules are applied to
WMULScript operators, and what their possible return value types are.

Single-typed operators

Operators that accept operands of one specific type use the general conversion rules
directly. The following lists all the single-typed WMLScript operators.

Operator Operand types Result type Operation performed

! boolean boolean logical NOT (unary)

&& booleans boolean logical AND

[booleans boolean logical OR

~ integer integer bitwise NOT (unary)

<< integers integer bitwise left shift

>> integers integer bitwise right shift with sign

>>> integers integer bitwise right shift with zero fill

& integers integer bitwise AND

A integers integer bitwise XOR

| integers integer bitwise OR

% integers integer remainder

div integers integer integer division

<<=, >>=, first operand: variable integer assignment with bitwise operation

>>>=, second operand: integer

&=, "=, |=

%=, div= first operand: variable integer assignment with numeric operation
second operand: integer

! Note: All operators may also have an invalid result type.

48

Automatic data type conversion rules

WMLScript Reference

Multi-typed operators

The following lists the operators that accept multi-typed operands.

Operator | Operand types Result type Operation performed
++ integer or floating-point integer/ pre- or post-increment (unary)
floating-point
-- integer or floating-point integer/ pre- or post-decrement (unary)
floating-point
+ integer or floating-point | integer/ unary plus
floating-point
- integer or floating-point | integer/ unary minus (negation)
floating-point
integers or integer/ multiplication
floating-points floating-point
/ integers or floating-point division
floating points
- integers or integer/ subtraction
floating points floating-point
+ integers, floating points integer/floating- | addition or string concatenation
or strings point/string
<<= integers, floating points boolean less than, less than or equal
or strings
>, >= integers, floating points boolean greater than, greater or equal
or strings
== integers, floating points boolean equal (identical values)
or strings
I= integers, floating points boolean not equal (different values)
or strings
=, -= first operand: variable integer/ Assignment with numeric operation
second operand: integer floating point
or floating point
/= first operand: variable floating-point assignment with division
second operand: integer
or floating-point
+= first operand: variable integer/floating- | assignment with addition or
second operand: integer, | point/string concatenation
floating-point or string
typeof any integer return internal data type (unary)
isvalid any boolean check for validity (unary)

49

WMLScript Reference

Automatic data type conversion rules

Operator | Operand types Result type Operation performed
2 first operand: boolean any conditional expression
second operand: any
third operand: any
= first operand: variable any assignment
second operand: any
, first operand: any any multiple evaluation

second operand: any

Note: All operators may also have an invalid result type.

50

Runtime error detection
and handling

Since WMLScript functions are used to implement services for users that expect the
user agents to work properly in all situations, error handling is of the utmost
importance. This means that while the language might not provide an exception
mechanism, for example, it should provide tools which prevent errors from
occurring or which notice them and take appropriate action. Aborting a program
execution is the last resort, to be used only in cases where nothing else is possible.

The following sections list errors that can occur when bytecode is downloaded and
executed. Programming errors such as infinite loops are not discussed. For such
cases a user-controlled abortion mechanism is needed.

Error detection

The error detection tools allow you to detect errors (whenever possible) that would
disrupt system performance. Since WMLScript is a weakly typed language, special
functionality has been provided to detect errors caused by invalid data types :

Check that the given variable contains the right value: WMLScript includes
type validation library functions such as Lang.isInt(), Lang.isFloat(),
Lang.parselnt() and Lang.parseFloax().

Check that the given variable contains a value that is of the right type:
WMLScript includes the operators typeof and isvalid that you can use for this
purpose.

Error handling

Error handling takes place after an error has occurred. This is the case when the
error could not have been prevented by error detection (because of memory limits,
external signals etc) or because it would have been too difficult to do so (overtlow,
underflow etc). Such cases can be divided into two classes:

Fatal errors: These are errors that cause the program to abort. Since
WMLScript functions are always called from some other user agent, program
abortion should always be signaled to the calling user agent. The user agent
then informs the user about the error.

51

WMLScript Reference Runtime error detection and handling

Non-fatal errors: These are errors that can be signaled back to the program as
special return values and the program then decides on the appropriate action.

The following errors are grouped according to their degree of severity.

Fatal errors

The following sections describe the fatal errors of WMLScript.

Bytecode errors

These errors are related to the bytecode and the instructions that are executed by
the WMLScript bytecode interpreter. They are indications of erroneous constant
pool elements, invalid instructions, invalid arguments to instructions, or
instructions that cannot be completed.

Verification failed

Description: Reports that the specified bytecode for the called compilation
unit did not pass the verification.

Generated: Every time a program attempts to call an external function.

Example: var a = 3*Qt her Scri pt#doThi s(paran;

Severity: Fatal.

Predictability: Detected during the bytecode verification.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Fatal library function error
Description: Reports that a call to a library function resulted in a fatal error.

Generated: Every time a call is made to a library function. Typically, this is
an unexpected error in the library function implementation.

Example: var a = String.format(param;
Severity: Fatal.
Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

52

Runtime error detection and handling WMLScript Reference

Invalid function arguments

Description: Reports that the number of arguments specified for a function
call do not match the number of arguments specified in the
called function.

Generated: Every time a call is made to an external function.

Example: Compiler generates an invalid parameter to an instruction, or
the number of parameters in the called function has changed.

Severity: Fatal.
Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

External function not found

Description: Reports that a call to an external function could not be found in
the specified compilation unit.

Generated: Every time a program attempts to call an external function.
Example: var a = 3*Qt her Scri pt#doThi s(paranj;
Severity: Fatal.

Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Unable to load compilation unit

Description: Reports that the specified compilation unit could not be loaded
due to unrecoverable errors in accessing the compilation unit in
the network server, or that the specified compilation unit does
not exist in the network server.

Generated: Every time a program attempts to call an external function.
Example: var a = 3*Qther Scri pt#doThi s(paranj;
Severity: Fatal.

53

WMLScript Reference Runtime error detection and handling

Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Access violation

Description: Reports an access violation. The called external function resides
in a protected compilation unit.

Generated: Every time a program attempts to call an external function.
Example: var a = 3*Qt her Scri pt#doThi s(paranj;
Severity: Fatal.

Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Stack underflow

Description: Indicates a stack underflow because of a program error
(compiler generated bad code).

Generated: Every time a program attempts to pop an empty stack.
Example: Only generated if compiler generates bad code.
Severity: Fatal.

Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Programmed abort

This error is generated when a WMLScript function calls the library function
Lang.abort(). See “BWMLScript standard libraries]’ on page p1]to abort the

execution.

Description: Reports that the execution of the bytecode was aborted by a call
to the Lang.abort() function.

Generated: Every time a program makes a call to the Lang.abort() function.

54

Runtime error detection and handling WMLScript Reference

Example: Lang. abort ("Unrecoverable error");

Severity: Fatal.

Predictability: None.

Solution: Abort program and signal an error to the caller of the

WMLScript interpreter.

Memory exhaustion errors

These errors are related to the dynamic behaviour of the WMLScript interpreter
and its use of memory.

Stack overflow
Description: Indicates a stack overflow.

Generated: Every time a program recourses too deeply or attempts to push
too many variables onto the operand stack.

Example: function f(x) { f(x+1); };
Severity: Fatal.
Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

Out of memory

Description: Indicates that no more memory resources are available to the
interpreter.
Generated: Every time the operating system fails to allocate more space for

the interpreter.

Example: function f(x) {
x=x+"abcdef ghi j kl mopqgr st uvxyz";
f(x);
b
Severity: Fatal.

Predictability: None.

Solution: Abort program and signal an error to the caller of the
WMLScript interpreter.

55

WMLScript Reference

Runtime error detection and handling

External exceptions

The following exceptions are initiated outside the WMLScript bytecode interpreter.

Initiated by the user

Description:

Generated:
Example:
Severity:
Predictability:

Solution:

Indicates that the user wants to abort the execution of the
program (for example, by pushing reset button).

At any time.

User presses reset button while an application is running.
Fatal.

None.

Abort program and signal an error to the caller of the
WMLScript interpreter.

Initiated by the system

Description:

Generated:
Example:
Severity:
Predictability:

Solution:

Indicates that an external fatal error occurred while a program is
running and it must be aborted. Exceptions can be caused by a
low battery, power off, and so on.

At any time.

The system is automatically switched off due to a low battery.
Fatal.

None.

Abort program and signal an error to the caller of the
WMLScript interpreter.

56

Runtime error detection and handling

WMLScript Reference

Non-fatal errors

The following sections describe the non-fatal errors of WMLScript.

Computational errors

These errors are related to arithmetical operations supported by the WMLScript.

Divide by zero
Description:

Generated:

Example:

Severity:
Predictability:

Solution:

Indicates a division by zero.

Every time a program attempts to divide by O (integer or
floating-point division or remainder).

var a = 10;

var b = 0;

var X = a / b;
var y = a div b;
var z = a %b;
al/=b;
Non-fatal.

High.

The result is an i nval i d value.

Integer overflow

Description:
Generated:

Example:

Severity:
Predictability:

Solution:

Reports an arithmetical integer overflow.

Every time a program attempts to execute an integer operation.

var a Lang. maxInt ();
var b Lang. maxInt ();
var ¢ = a + b;

Non-fatal.
High, although difficult in some cases.

The result is an i nval i d value.

57

WMLScript Reference

Runtime error detection and handling

Floating-point overflow

Description:

Generated:

Example:

Severity:

Predictability:

Solution:

Reports an arithmetical floating-point overflow.

Every time a program attempts to execute a floating-point
operation.

var a = 1.6e308;
var b 1. 6e308;
var ¢ = a * b;

Non-fatal.
High, although difficult in some cases.

The result is ani nval i d value.

Floating-point underflow

Description:

Generated:

Example:

Severity:

Predictability:

Solution:

Reports an arithmetical underflow.

Every time the result of a floating-point operation is smaller
than what can be represented.

var a = Float. precision();
var b Fl oat . preci sion();
var ¢ = a * b;

Non-fatal.
High, although difficult in some cases.

The result is a floating-point value 0. 0.

Constant reference errors

These errors are related to runtime references and to constants in the constant pool.

Not a number floating-point constant

Description:

Generated:

Example:

Reports a reference to a floating-point literal in the constant
pool that is not a number, as defined in IEEE754.

Every time a program attempts to access a floating-point literal
and the compiler has generated a not a number as a floating-

point constant.

A reference to a floating-point literal.

58

Runtime error detection and handling WMLScript Reference

Severity: Non-fatal.
Predictability: High.

Solution: The result is an i nval i d value.

Infinite floating-point constant

Description: Reports a reference to a floating-point literal in the constant
pool that is either positive or negative infinity.

Generated: Every time a program attempts to access a floating-point literal
and the compiler has generated a floating-point constant with a
value of positive or negative infinity.

Example: A reference to a floating-point literal.

Severity: Non-fatal.

Predictability: High.

Solution: The result is an i nval i d value.

lllegal floating-point reference

Description: Reports an erroneous reference to a floating-point value in the
constant pool.

Generated: Every time a program attempts to use floating-point values and
the environment supports only integer values.

Example: var a = 3. 14;

Severity: Non-fatal.

Predictability: High, can be detected during the runtime.
Solution: The resultis an i nval i d value.

Conversion errors

These errors are related to automatic conversions supported by the WMLScript.

Integer too large

Description: Indicates a conversion to an integer value where the integer
value is too large (positive or negative).

59

WMLScript Reference Runtime error detection and handling

Generated: Every time an application attempts to make an automatic
conversion to an integer value.

Example: var a = -"99999999999999999999999999999999999999" ;
Severity: Non-fatal.
Predictability: None.

Solution: The result is an i nval i d value.

Floating-point too large

Description: Indicates a conversion to a floating-point value where the
floating-point value is too large (positive or negative).

Generated: Every time an application attempts to make an automatic
conversion to a floating-point value.

Example: var a = -"99999999. 999999999999e99999";
Severity: Non-fatal.
Predictability: None.

Solution: The result is ani nval i d value.

Floating-point too small

Description: Indicates a conversion to a floating-point value where the
floating-point value is too small (positive or negative).

Generated: Every time an application attempts to make an automatic
conversion to a floating-point value.

Example: var a = -"0.01le-99";
Severity: Non-fatal.
Predictability: None.

Solution: The result is a floating-point value 0. 0.

60

Appendix A

WMLScript standard
libraries

This appendix discusses the library interfaces for the standard set of libraries
supported by WMLScript.

Typographical conventions

The libraries are described by the following information:
Name: Library name. Note that library names are case-sensitive.
Examples: Lang, Stri ng

Description: A short description of the library and conventions used.

Each function in the library is represented by the following information:

Function: Specifies the function name and the number of function
parameters. Note that function names are case-sensitive.

Example: abs(value)
Usage: var a = 3*Lang. abs(| ength);

Description: Describes the function’s behaviour and its parameters.
Parameters: Specifies the function’s parameter types.
Example: value=Number
Return value: Specifies the type(s) of the return value.
Example: String or invalid.
Exceptions: Describes the possible special exceptions and error codes and

the corresponding return values. Standard errors common to all
functions are not described here.

61

WNMLScript Reference WMLScript standard libraries

Example: If the valuel <= 0 and the value2 < 0 and not an
integer then i nval i d is returned.

Example: Gives a few examples of how the function could be used.

var a -3;
var b = Lang. abs(a); /Il b =3

WMLScript compliance

These standard library functions provide a mechanism for extending the
WMLScript language. Thus, the specified library functions must follow the
WMLScript conventions and rules.

Supported data types

The following WMLScript types are used in the function definitions to denote the
type of function parameters and the type of return values:

Boolean
Integer
Float
String
Invalid

In addition to these, number can be used to denote a parameter type when both
integer and floating-point parameter value types are accepted. Any can be used
when the type can be any of the supported types.

Data type conversions

Since WMLScript is a weakly typed language, the conversions between the data
types are done automatically if necessary. The library functions follow WMLScript
operator data type conversion rules except where explicitly stated otherwise.

Error handling

Error cases are handled in the same way as in the WMLScript language:

Aninval i d function argument results in an i nval i d return value with no
other side effects unless explicitly stated otherwise.

A function argument that cannot be converted to the required parameter type
results in an i nval i d return value with no side effects.

Function-dependent error cases are handled by returning a suitable error code
specified in each function definition.

62

WNMLScript standard libraries

WMLScript Reference

Lang library

Name:

Description:

abs
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

min
Function:

Description:

Parameters:

Return value:

Lang

This library contains a set of functions closely related to the
WMULScript language core.

abs(value)

Returns the absolute value of the given number.

If the given number is an integer, an integer value is
returned.

If the given number is a floating-point, a floating-point
value is returned.

value=Number

Number or invalid.

var a -3;
var b = Lang.abs(a); // b =3

min(valuel, value)

Returns the minimum value of the given two numbers. The

value and type returned are the same as the value and type of

the selected number. The selection is done as follows:

1 WMLScript operator data type conversion rules for
integers and floating-points are used to specify the data
type for comparison.

2 The numbers are compared and the smaller one is selected.

3 If the values are equal, the first value is selected.

value]=Number
value2=Number

Number or invalid.

63

WNMLScript Reference WMLScript standard libraries

Exceptions: -

Example: var a=-3;
var b=Lang. abs(a);
var c=Lang. mn(a,b); /] c=-3
var d=Lang. m n(45, 76.3); /1 d=45 (integer)
var e=Lang. m n(45, 45.0); /1 e=45 (integer)

max

Function: max(valuel, value)

Description: Returns the maximum value of the two given numbers. The
value and type returned are the same as the value and type of
the selected number. The selection is done as follows:

1 WMLScript operator data type conversion rules for
integers and floating-points are used to specify the data
type.

2 The numbers are compared and the larger one is selected.

3 If the values are equal, the first value is selected.

Parameters: value]1=Number
value2=Number

Return value: Number or invalid.

Exceptions: -

Example: var a=-3;
var b=Lang. abs(a);
var c=Lang. max(a, b); /1 c=3
var d=Lang. max(45.5, 76); /1 d=76 (integer)
var e=Lang. max(45.0, 45); /1 e=45.0 (fl oat)

parseint

Function: parselnt(value)

Description: Returns an integer value defined by the string value. The legal

integer syntax is specified by the WMLScript numeric string
grammar for decimal integer literals, with the following
additional parsing rule:

Parsing ends when the first character is encountered that is
not a leading + or — or a decimal digit.

64

WNMLScript standard libraries

WMLScript Reference

Parameters:

Return value:

The result: the parsed string is converted to an integer value.
value=String

Integer or invalid.

Exceptions: In case of a parsing error ani nval i d value is returned.

Example: var i=Lang. parselnt("1234"); /1 1=1234
var j=Lang. parselnt("100 nis"); /1 j=100

parseFloat

Function: parseFloat(value)

Description: Returns a floating-point value defined by the string value. The
legal floating-point syntax is specified by the WMLScript
numeric string grammar for decimal floating-point literals, with
the following additional parsing rule:

Parsing ends when the first character is encountered that
cannot be parsed as being part of the floating-point
representation.
The result: the parsed string is converted to a floating-point
value.
Parameters: value=String

Return value:

Floating-point or invalid.

Exceptions: In case of a parsing error ani nval i d value is returned.
If the system does not support floating-point operations, an
i nval i d value is returned.
Example: var a=Lang. parseFl oat ("123.7"); /1 a=123.7
var b=Lang. parseFl oat ("+7.34e2 Hz"); // b=7.34e2
var c=Lang. parseFl oat ("70e-2 F"); /1 ¢=70. Oe-2
var d=Lang. parseFloat("-1. C'); /[l d=-0.1
var e=Lang. parseFl oat (" 100 "); /1 e=100.0

var f=Lang. parseFl oat ("Nunber:5.5"); // f=invalid
var g=Lang. parseFloat("7.3e neters); // g=invalid
var h=Lang. parseFl oat("7.3e- ms); /1 h=invalid

65

WNMLScript Reference

WMLScript standard libraries

isint
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

isFloat
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

maxint
Function:
Description:

Parameters:

isInt(value)

Returns a boolean value that is t r ue if the given value can be
converted into an integer number by using parselnt(value).
Otherwise f al se is returned.

value=Any

Boolean or invalid.

var a=Lang.islnt("-123"); /1l true
var b=Lang.islnt("123.33); /1l true
var c=Lang.islnt("string"); /1 false
var d=Lang.i sl nt("#123"); /1 false
var e=Lang.islnt(invalid); /1 invalid
isFloat(value)

Returns a boolean value that is t r ue if the given value can be
converted into a floating-point number using parseFloat(value).
Otherwise f al se is returned.

value=Any

Boolean or invalid.

If the system does not support floating-point operations, an
i nval i d value is returned.

var a=Lang.isFl oat("-123"); /1l true
var b=Lang. i sFl oat ("123.33"); /1l true
var c=Lang.isFloat("string"); /1 false
var d=Lang. i sFl oat ("#123.33");// false

var e=Lang.isFl oat(invalid); /1 invalid
maxInt()

Returns the maximum integer value.

66

WNMLScript standard libraries

WMLScript Reference

Return value:

Exceptions:

Example:

minint
Function:
Description:

Parameters:

Return value:

Exceptions:

Example:

float
Function:
Description:

Parameters:

Return value:

Exceptions:

Example:

exit
Function:

Description:

Parameters:

Return value:

Integer 2147483647

var a=Lang. maxint();

minlnt()

Returns the minimum integer value.

Integer —2147483647

var a=Lang.mnlnt();

tloat()

Returns t r ue if floating-points are supported and f al se if not.

Boolean.

var fl oatsSupported = Lang.float();

exit(value)

Ends the interpretation of the WMLScript bytecode and returns
control to the caller of the WMLScript interpreter with the
given return value. You can use this function to perform a
normal exit from a function in cases where the execution of the

WMLScript bytecode should be discontinued.
value=Any

None. This function ends the interpretation.

67

WNMLScript Reference

WMLScript standard libraries

Exceptions:

Example:

abort
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

random

Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

Lang. exit("Value: " + nyVal);
Lang. exit (i nvalid);

/1 Returns a string
// Returns invalid

abort(errorDescription)

Aborts the interpretation of the WMLScript bytecode and
returns control to the caller of the WMLScript interpreter with
the return errorDescription. You can use this function to
perform an abnormal exit in cases where the execution of the
WMULScript should be discontinued due to serious errors
detected by the calling function.

If the type of the errorDescription is i nval i d, string
i nval i d is used as the errorDescription instead.

errorDescription=String

None. This function aborts the interpretation.

Lang. abort ("Error: + errVal); /1 Error value string

random(value)

Returns an integer value with a positive sign that is greater than
or equal to 0 but less than or equal to the given value. The
return value is chosen randomly or pseudo-randomly with an
approximately uniform distribution over that range.

If the value is a floating-point, Float.int() is first used to
calculate the actual integer value.

value=Integer
Integer or invalid.

If value is equal to zero (0), the function returns zero.
If value is less than zero (0), the function returns i nval i d.

var a=10;
var b=Lang.randon(5. 1) *a; /1 b=0..50
var c=Lang.random("string"); // c=invalid

68

WNMLScript standard libraries

WMLScript Reference

seed
Function:

Description:

Parameters:

Return value:

seed(value)

Initializes the pseudo-random number sequence and returns an
empty string.

If the value is zero or a positive integer, the given value is
used for initialization: otherwise a random initialization
value is used.

If the value is a floating-point, Float.int() is first used to
calculate the actual integer value.

value=Integer

String or invalid.

Exceptions: -
Example: var a=Lang. seed(123); Il a=""
var b=Lang. randon{ 20); /1 b=0..20
var c=Lang. seed("seed"); /1 c=invalid (random seed
/1 | eft unchanged)
characterSet
Function: CharacterSet()
Description: Returns the character set supported by the WMLScript
Interpreter. The return value is an integer that denotes a
MIBEnum value assigned by the IANA for all character sets.
Parameters: -

Return value:

Exceptions:

Example:

Integer

Var charset = Lang.characterSet(); // charset = 4 for
latinl

69

WNMLScript Reference

WMLScript standard libraries

Float library

Name:

Description:

int
Function:

Description:

Parameters:
Return value:
Exceptions:

Example:

floor
Function:

Description:

Parameters:
Return value:
Exceptions:

Example:

Float

This library contains a set of typical arithmetical floating-point
functions that are frequently used by applications.

int(value)

Returns the integer part of the given value.

If the value is already an integer, the result is the value
itself.

valne=Number

Integer or invalid.

var a=3. 14;
var b=Float.int(a); /1 b=3
var c=Float.int(-2.8); /] c=-2

tloor(value)

Returns the integer value that is nearest to but not greater than
the given value.

If the value is already an integer, the result is the value
itself.

value=Number

Integer or invalid.

var a=3. 14;
var b=Float.floor(a); /1 b=3
var c=Fl oat.fl oor(-2.8); /] c=-3

WNMLScript standard libraries

WMLScript Reference

ceil
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

pow
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

ceil(value)

Returns the integer value that is nearest to but not less than the
given value.

If the value is already an integer, the result is the value
itself.

value=Number

Integer or invalid.

var a=3. 14;
var b=Float.ceil (a); /] b=4
var c=Float.ceil (-2.8); /] c=-2

pow(valuel, value2)

Returns an approximation of the result of raising valuel to the
power of value2.

If valuel is a negative number, value2 must be an integer.

value]=Number
value2=Number

Floating-point or invalid.
If valuel == 0 and value2 < 0 theni nval i d is returned.

If valuel < 0 and value2 is not an integer then i nval i d is
returned.

var a=3;
var b=Fl oat. pow a, 2); /1 b=9

71

WNMLScript Reference

WMLScript standard libraries

round

Function:

Description:

Parameters:
Return value:
Exceptions:

Example:

Sq rt
Function:
Description:
Parameters:
Return value:
Exceptions:

Example:

maxFloat
Function:

Description:

Parameters:

round(value)

Returns the number value that is closest to the given value and
that is equal to a mathematical integer.

If two integer number values are equally close to the value,
the result is the larger number value.

If the value is already an integer, the result is the value
itself.

valne=Number

Integer or invalid.

var a=Fl oat.round(3.5); /1 a=4
var b=Fl oat.round(-3.5); /1 b=-3
var c=Fl oat.round(0.5); /1l c=1
var d=Fl oat.round(-0.5); /1 d=0
sqrt(value)

Returns an approximation of the square root of the given value.
value=Floating-point

Floating-point or invalid.

If the value is a negative number, i nval i d is returned.

var a=4;

var b=Fl oat.sqrt(a); /1 b=2.0
var c=Float.sqrt(5); /] ¢=2.2360679775

maxFloat()

Returns the maximum floating-point value supported by
IEEE754 in single precision floating-point format.

72

WNMLScript standard libraries

WMLScript Reference

Return value:
Exceptions:

Example:

minFloat

Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

String library

Floating-point 3.40282347E+38.

var a=Fl oat. maxFl oat () ;

minFloat()

Returns the smallest nonzero floating-point value supported by
IEEE754 in single precision floating-point format.

Floating-point. Smaller than or equal to the normalized
minimum single precision floating-point value: 1.17549435E-38.

var a=Fl oat. m nFl oat ();

Name:

Description:

String

This library contains a set of string functions, a string being an
array of characters where each has an index. The first character
in a string has an index of zero (0). The length of the string is
the number of characters in the array.

You can specify a special separator by which elements in a
string can be separated, and you can then access these elements
by specifying the separator and the element index. The first
element in a string has an index of zero (0). Each occurrence of
the separator in the string separates two elements. Note that no
escaping of separators is allowed.

A white space character is one of the following characters:

» TAB: Horizontal Tabulation
* VT: Vertical Tabulation

* FF: Form Feed

e SP:Space

* LF: Line Feed

* CR: Carriage Return

73

WNMLScript Reference

WMLScript standard libraries

length
Function:
Description:

Parameters:

Return value:

Exceptions:

Example:

isEmpty
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

charAt

Function:

Description:

Parameters:

length(string)
Returns the length (number of characters) of the given string.
string=String

Integer or invalid.

var a="ABC';

var b=String.|ength(a); /1 b=3
var c=String.length(""); Il c=0
var d=String.|ength(342); /1 d=3
isEmpty(string)

Returns a boolean t r ue if the string length is zero and a
boolean f al se otherwise.

string=String

Boolean or invalid.

var a="Hello";

var b="";
var c=String.isEnpty(a); /1 c=false
var d=String.isEnpty(b); /1 d=true

var e=String.isEnpty(true); /1 e=false

charAt(string, index)

Returns a new string of length one containing the character at
the specified index of the given string.

If the index value is a floating-point, Float.int() is first used
to calculate the actual integer index.

string=String
index=Number (the index of the character to be returned)

74

WNMLScript standard libraries

WMLScript Reference

Return value:
Exceptions:

Example:

subString
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

String or invalid.

If index is out of range then an empty string ("") is returned.

var a="My nane is Joe";

var b=String.charAt(a, 0); /[l b="M

var c=String.charAt(a, 100); /l c=""

var d=String.charAt(34, 0); /[l d="3"

var e=String.charAt(a, "first") /1 e=invalid

subString(string, startIndex, length)

Returns a new string that is a substring of the given string. The
substring begins at the specified startIndex and its length
(number of characters) is the given length.

If the startIndex is less than 0, 0 is used for the startIndex.

If the length is larger than the remaining number of
characters, the length is replaced by the number of
remaining characters.

If the startIndex or the length is a floating-point, Float.int(
) is first used to calculate the actual integer value.

string=String
startIndex=Number (the beginning index, inclusive)
length=Number (the length of the substring)

String or invalid.

If startIndex is larger than the last index an empty string ("") is
returned.

If length <= 0 an empty string ("") is returned.

var a="ABCD';
var b=String.subString(a, 1, 2); /1 b="BC"
var c=String.subString(a, 2, 5); /] c="CD'

var d=String.subString(1234, 0, 2); [/ d="12"

75

WNMLScript Reference

WMLScript standard libraries

find
Function:

Description:

Parameters:

Return value:
Exceptions:

Example:

replace
Function:

Description:

Parameters:

Return value:

Exceptions:

find(string, subString)

Returns the index of the first character in the string that matches
the requested subString.

If no match is found, the integer value - 1 is returned.
Two strings are defined to match when they are identical.

Characters with multiple possible representations match
only if they have the same representation in both strings.

No case folding is performed.

string=String
subString=String

Integer or invalid.

var
var
var
var
var

a="abcde";

b=String.find(a, "cd"); /1 b=2
c=String.find(34.2, "de");// c=-1
d=String.find(a, "gz"); /] d=-1
e=String.find(34, "3"); /1 e=0

replace(string, oldSubString, newSubString)

Returns a new string resulting from replacing all occurrences of
0ldSubString in the given string with newSubString.

Two strings are defined to match when they are identical.

Characters with multiple possible representations match
only if they have the same representation in both strings.

No case folding is performed.

string=String
oldSubString=String
newSubString=String

String or invalid.

76

WNMLScript standard libraries

WMLScript Reference

Example:

elements
Function:

Description:

Parameters:

Return value:
Exceptions:

Example:

elementAt
Function:

Description:

var a="Hello Joe. What is up Joe?";

var newNane="Don";

var ol dNanme="Joe";

var c=String.replace(a, ol dName, newNane);
/1 c="Hello Don. What is up Don?"

var d=String.replace(a, newNane, ol dNane);
/1 d="Hello Joe. What is up Joe?"

elements(string, separator)

Returns the number of elements in the given string separated by
the given separator. An empty string (“”) is a valid element,
meaning that this function can never return a value that is less or
equal to zero.

string=String

separator=String (the first character of the string used as a
separator)

Integer or invalid.

Return i nval i d if the separator is an empty string.

var a="My nane is Joe; Age 50;";

var b=String.elements(a, " ");// b=6

var c=String.elements(a, ";");// c=3

var d=String.elements("", ";"); /1 d=1

var e=String.elements("a", ";"); /] e=1

var f=String.elements(";",";"); Il f=2

var g=String.elements(";;,;",";."); /'l g=4 separator=;

elementAt(string, index, separator)

Searches string for index’th element, the elements being
separated by a separator, and returns the corresponding
element.

If the index is less than 0, the first element is returned.

If the index is larger than the number of elements, the last
element is returned.

If the string is an empty string, an empty string is returned.

If the index value is a floating-point, Float.int() is first used
to calculate the actual index value.

77

WNMLScript Reference

WMLScript standard libraries

Parameters:

Return value:
Exceptions:

Example:

removeAt
Function:

Description:

Parameters:

Return value:
Exceptions:

Example:

string=String

index=Number (the index of the element to be returned)
separator=String (the first character of the string used as
separator)

String or invalid.

Returns i nval i d if the separator is an empty string.

var a="M nane is Joe; Age 50;";

var b=String.elenentAt(a, 0, " "); Il b="m"
var c=String.elementAt(a, 14, ";"); [/ c=""
var d=String.elenmentAt(a, 1, ";"); // d=" Age 50"

removeAt(string, index, separator)

Returns a new string where the element and the corresponding
separator (if it exists) with the given index are removed from the
given string.

If the index is less than 0, the first element is removed.

If the index is larger than the number of elements, the last
element is removed.

If the string is empty, the function returns a new empty
string.

If the index value is a floating-point, Float.int() is first used
to calculate the actual index value.

string=String

index=Number (the index of the element to be deleted)
separator=String (the first character of the string used as a
separator)

String or invalid.

Returns i nval i d if the separator is an empty string.

var a="A A, B CD';

var s=" ",

var b=String.renoveAt(a, 1, s); /'l b="A BCD
var c=String.renoveAt(a, 0, ";"); /[l c=" BCD
var d=String.renoveAt(a, 14, ";"); /[l d="A A"

78

WNMLScript standard libraries

WMLScript Reference

replaceAt
Function:

Description:

Parameters:

Return value:
Exceptions:

Example:

insertAt
Function:

Description:

replaceAt(string, element, index, separator)

Returns a string with the current element at the specified index
replaced by the given element.

If the index is less than 0, the first element is replaced.

If the index is larger than the number of elements, the last

element is replaced.

If the string is empty, the function returns a new string with
the given element.

If the index value is a floating-point, Float.int() is first used
to calculate the actual index value.

string=String

element=String

index=Number (the index of the element to be replaced)
separator=String (the first character of the string used as
separator)

String or invalid.

Returns i nval i d if the separator is an empty string.

var
var
var
var

a="B C, E';

s=" ",

b=String.repl aceAt (a, "A", 0, s); /1l b="AC FE'
c=String.replaceAt(a, "F', 5 ";"); /Il ¢c="B C F"

insertAt(string, element, index, separator)

Returns a new string with the element and the corresponding
separator (if needed) inserted at the specified element index of
the original string.

If the index is less than 0, 0 is used as the index.

If the index is larger than the number of elements, the
element 1s appended at the end of the string.

If the string is empty, the function returns a new string with
the given element.

If the index value is a floating-point, Float.int() is first used
to calculate the actual index value.

79

WNMLScript Reference WMLScript standard libraries

Parameters: string=String (original string)
element=String (element to be inserted)
index=Number (the index of the element to be added)
separator=String (the first character of the string used as a

separator)
Return value: String or invalid.
Exceptions: Returns i nval i d if the separator is an empty string.
Example: var a="B C, E';

var s=" ";

var b=String.insertAt(a,
var c=String.insertAt(a,

/1 b="ABC FE
/]l c="B C EX

m g X >
o P wo
=0 om
S22

var d=String.insertAt(a, D /l d="B C, D, E"
var e=String.insertAt(a, ., 5 ""); /1l e="B C, E;F"
squeeze
Function: squeeze(string)
Description: Returns a string where all the consecutive series of white spaces
within the string are reduced to one.
Parameters: string=String
Return value: String or invalid.
Exceptions: -
Example: var a="Hel | o";
var b=" Bye Jon . See you! "
var c¢=String.squeeze(a); /1 c="Hello"
var d=String.squeeze(b); /1 d=" Bye Jon . See you!
trim
Function: trim(string)
Description: Returns a string where all the trailing and leading white spaces
in the given string have been trimmed.
Parameters: string=String
Return value: String or invalid.
Exceptions: -

80

WNMLScript standard libraries WMLScript Reference

Example: var a="Hell o";
var b=" Bye Jon . See you! "
var c=String.trima); /1l c="Hello"
var d=String.trin(b); /1 d="Bye Jon . See you!"
compare
Function: compare(stringl, string2)
Description: The return value indicates the lexicographic relationship of

stringl to string2. The relation is based on the relationships
between the character codes in the native character set. The
return value is

-1 if stringl is less than string2,
0 if stringl is identical to string2 or

1 if stringl is greater than string?2.

Parameters: stringl=String
string2=String

Return value: Integer or invalid.
Exceptions: -
Example: var a="Hel | 0";
var b="Hello";
var c=String.conpare(a, b); /1 c=0

var d=String.conpare("Bye", "Jon") /] d=-1
var e=String.conpare("Jon", "Bye") /1l e=1

toString

Function: toString(value)

Description: Returns a string representation of the given value. This function
performs exactly the same conversions as WMLScript except
that the i nval i d value returns the string “i nval i d”.

Parameters: value=Any

Return value: String.

Exceptions: -

Example: var a=String.toString(12); /] a="12"

var b=String.toString(true); [/ b="true"

81

WNMLScript Reference

WMLScript standard libraries

format

Function:

Description:

format(format, value)

Converts the given value to a string by using the given
formatting provided as a format string. The format string can
contain only one format specifier, which can be located
anywhere inside the string. If more than one is specified, only
the first one (leftmost) is used and the remaining specifiers are
replaced by an empty string. The format specifier takes the
following form:

% [w dth] [.precision] type

The wi dt h argument is a non-negative decimal integer
controlling the minimum number of characters printed. If
the number of characters in the output value is less than the
specified width, blanks are added to the left until the
minimum width is reached. The wi dt h argument never
causes the value to be truncated. If the number of
characters in the output value is greater than the specified
width or if the width is not given, all characters of the value
are printed (subject to the precision argument).

The pr eci si on argument specifies a non-negative decimal
integer, preceded by a period (.), that can be used to set the
precision of the output value. The interpretation of this
value depends on the given t ype:

d Specifies the minimum number of digits to be printed. If
the number of digits in the value is less than the precision
value, the output value is padded on the left with zeroes.
The value is not truncated when the number of digits
exceeds the precision value. The default precision value is
1. If the precision value is specified as 0 and the value to be
converted is 0, the result is an empty string.

f Specifies the number of digits after the decimal point. If a
decimal point appears, at least one digit must appear before
it. The value is rounded to the appropriate number of
digits. The default precision is 6; if the precision is 0 or if
the period (.) appears without a number following it, no
decimal point is printed. When the number of digits after
the decimal point in the value is less than the pr eci si on,
letter O should be padded to fill columns (e.g., result of
String.format ("9%2.3f", 1.2) willbe" 1.200")

s Specifies the maximum number of characters to be printed.
By default, all the characters are printed. When the wi dt h
is larger than pr eci si on, the wi dt h should be ignored.

82

WNMLScript standard libraries

WMLScript Reference

Parameters:

Return value:
Exceptions:

Example:

Unlike the wi dt h argument, the pr eci si on argument can
cause either truncation of the output value or rounding of a
floating-point value.

The t ype argument is the only format argument required; it
appears after any optional format fields. The type character
determines whether the given value is interpreted as
integer, floating-point or string. The supported t ype
arguments are:

Integer: The output value has the form [-]dddd, where
dddd is one or more decimal digits.

Floating-point: The output value has the form [-
]dddd.dddd, where dddd is one or more decimal digits.
The number of digits before the decimal point depends on
the size of the number, and the number of digits after the
decimal point depends on the precision requested.

String: Characters are printed up to the end of the string or
until the precision value is reached.

Percent character (%) in the format string can be presented
by preceding it with another percent character (% %).

format=String
value=Any

String or invalid.

Illegal format specifies results in an i nval i d return value.

var
var
var
var
var
var
var
var
var
var
var
var
var
var
var

a=45;

b=- 45;

c="now";

d=1. 2345678;

e=String.format("e: %%d", a); /Il e="e: 45"
f=String.format("%d", b); [f=" - 45"
g=String.format("%. 4d", a); /1 g=" 0045"
h=String.format ("%6. 4d", b); /1 h=" -0045"
i=String.format("Do it %", c); /1 i="Do it now'
j=String.format ("%8f", d); /1 j="1.234567"
k=String.format ("9%0.2f %84, d); Il k=" 1. 23%
| =String.format ("9%8f %R2f.", d); /1 1="1.234567 ."
n=String. format ("% 0d", 0); I mE"
n=String.format ("%d", "Int"); /1 n=invalid
o=String.format("%", true); /1 o="true"

83

WNMLScript Reference

WMLScript standard libraries

URL library

Name:

Description:

URL

This library contains a set of functions for handling absolute
URLs and relative URLSs. The general URL syntax supported
1s:

<schene>: // <host >: <port >/ <pat h>; <par anms>?<quer y>#<f r agnent >

isValid
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

getScheme

Function:

Description:

Parameters:

Return value:

isValid(url)

Returns t r ue if the given #r/ has the right URL syntax,
otherwise returns f al se.

Both absolute and relative URLSs are supported.

Relative URLs are not resolved into absolute URLs.
url=String

Boolean or invalid.

var a=URL.isValid("http://ww.acne. com script# unc()");
/] a=true

var b=URL.isValid("../comon#test()");

/1 b=true

var c=URL.isValid("experinmental ?://ww.acme. conl pub")
/1 c=false

getScheme(url)

Returns the scheme used in the given url.
Both absolute and relative URLSs are supported.

Relative URLs are not resolved into absolute URLSs.
url=String

String or invalid.

84

WNMLScript standard libraries

WMLScript Reference

Exceptions:

Example:

getHost
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

getPort
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

If an invalid URL syntax is encountered while extracting the
scheme, an i nval i d value is returned.

var a=URL. get Schenme("http://w a.cont');

var b=URL. get Scherme("w. a. cont'); /] b=""

getHost(url)

Returns the host specified in the given url.

Both absolute and relative URLs are supported.
Relative URLs are not resolved into absolute URLs.

url=String
String or invalid.

If an invalid URL syntax is encountered while extracting the
host part, an i nval i d value is returned.

var a=URL. get Host ("http://ww. acre. cont pub");
/1 a="ww. acre. cont

var b=URL. get Host (" pat h#frag");

/1 b=""

getPort(url)

Returns the port number specified in the given u7l.
If no port is specified, an empty string is returned.
Both absolute and relative URLs are supported.

Relative URLSs are not resolved into absolute URLs.
url=String
String or invalid.

If an invalid URL syntax is encountered while extracting the
port number, an i nval i d value is returned.

var a=URL. get Port("http://ww. acne. com 80/ pat h");
/1 a="80"

var b=URL. getPort("http://ww. acne. con pat h");

/1l b=""

/1 a="http"

85

WNMLScript Reference

WMLScript standard libraries

getPath

Function:

Description:

Parameters:

Return value:

getPath(url)

Returns the path specified in the given url.
Both absolute and relative URLs are supported.

Relative URLSs are not resolved into absolute URLs.
url=String

String or invalid.

Exceptions: If an invalid URL syntax is encountered while extracting the
path, an i nval i d value is returned.
Examples: var a=URL. get Path("http://w a. com hone/ sub/ conp#frag");
/1 a="/home/ sub/ conmp"”
var b=URL. get Path("../hone/ sub/ conp#frag");
/1 b="../home/sub/conmp"
getParameters
Function: getParameters(url)
Description: Returns the parameters used in the given u7l.
If no parameters are specified an empty string is returned.
Both absolute and relative URLSs are supported.
Relative URLs are not resolved into absolute URLs.
Parameters: url=String

Return value:

Exceptions:

Example:

String or invalid.

If an invalid URL syntax is encountered while extracting the
parameters, an i nval i d value is returned.

var a=URL. get Paranmeters("http://w. a.c/scr; 3; 2?x=1&y=3");
/] a="3;2"

var b=URL. get Paraneters("../scr;3;2?x=1&=3");

/1 b="3;2"

WNMLScript standard libraries

WMLScript Reference

getQuery
Function:

Description:

Parameters:

Return value:

getQuery(url)

Returns the query part specified in the given u7l.
If no query part is specified an empty string is returned.
Both absolute and relative URLSs are supported.
Relative URLs are not resolved into absolute URLs.

url=String

String or invalid.

Exceptions: If an invalid URL syntax is encountered while extracting the
query part, an i nval i d value is returned.
Example: var a=URL. get Query("http://w a.c/scr;3;2?x=1&=3");
/] a="x=1&y=3"
getFragment
Function: getFragment(url)
Description: Returns the fragment used in the given u7l.
If no fragment is specified an empty string is returned.
Both absolute and relative URLs are supported.
Relative URLSs are not resolved into absolute URLs.
Parameters: url=String

Return value:

Exceptions:

Example:

getBase

Function:

Description:

String or invalid.

If an invalid URL syntax is encountered while extracting the
fragment, an i nval i d value is returned.

var a=URL. get Fragnment ("http://ww. acne. coni cont #f rag") ;
/1 a="frag"

getBase()

Returns an absolute URL (without the fragment) of the current
WMLScript compilation unit.

87

WNMLScript Reference

WMLScript standard libraries

Parameters:
Return value:
Exceptions:

Example:

getReferer
Function:

Description:

Parameters:
Return value:
Exceptions:

Example:

resolve
Function:

Description:

Parameters:

Return value:

String.

var a=URL. get Base();
/'l Result: "http://ww:.acre.conm test.scr"

getReferer()

Returns the smallest relative URL (relative to the base URL of
the current compilation unit) to the resource that called the
current compilation unit.

Local function calls do not change the referer.

If the current compilation unit does not have a referer, an
empty string is returned.

String.
var base =URL. get Base() ;
/'l base ="http://wwm. acne. conif current.scr"

var referer =URL. getReferer();
Il referer ="app.wrd"

resolve(baseUrl, embeddedUrl)

Returns an absolute URL from the given baseUrl and the
embeddedUrl according to the rules specified in RFC2396.

If the embeddedUrl is already an absolute URL, the

function returns it without modification.

baseUrl=String
embeddedUrl=String

String or invalid.

88

WNMLScript standard libraries

WMLScript Reference

Exceptions: If an invalid URL syntax is encountered as part of the
resolution, i nval i d value is returned.
Example: var a=URL.resol ve("http://ww. foo.com","foo.vcf");
/1 a="http://ww.foo.conlfoo.vcf"
escapeString
Function: escapeString(string)
Description: This function computes a new version of a string value in which
special characters are replaced by a hexadecimal escape sequence
(you must use a two-digit escape sequence of the form %xx).
The characters to be escaped are:
Control characters: US — ASCII coded characters 00 — 1F
and 7F
Space: US - ASCII coded character 20 hexadecimal
Reserved: “;” | “/” | “?” | “:” | “@” | “&” | “=” | “+” | “$” |
(",’
Unwl'se: (‘{(‘ | (‘}” | ‘(|,’ | ‘(\,’ | ‘(/\,’ | ‘([(‘ | (‘:]” | [{ap>]
Dell'm5: ‘(<,’ | ‘(>,) | ‘(#,’ | (‘%,’ | <,’>
The given string is escaped as such: no URL parsing is
performed.
Parameters: string=String

Return value:

String or invalid.

Exceptions: If string contains characters that are not part of the US-ASCII
character set, an i nval i d value is returned.
Example: var
a=URL. escapeString("http://w a.c/ dck?x=\u007ef #crd");
/1 a="httpyBadRf %2f w. a. c92f dck9Bf x9¥8d%ef ¥23cr d"
unescapeString
Function: unescapeString(string)
Description: The unescape function computes a new version of a string value

in which each escape sequence of the sort that might be
introduced by the URL.escapeString() function is replaced by
the character it represents.

89

WNMLScript Reference

WMLScript standard libraries

Parameters:
Return value:

Exceptions:

Example:

loadString
Function:

Description:

Parameters:

Return value:

The given string is unescaped as such; no URL parsing is
performed.

string=String
String or invalid.

If the string contains characters that are not part of the US-
ASCII character set, an i nval i d value is returned.

var a="httpy%Ba%Rf %2f w. a. c%2f dck¥Bf x¥8d12%23crd";
var b=URL. unescapeString(a);
/1 b ="http://w a.c/dck?x=12#crd

loadString(url, content Type)

Returns the content denoted by the given absolute 7/ and the
contentType.

The given content type is erroneous if it does not follow the
following rules:

You can only specify one content yype. The whole string
must match with only one content type and you cannot
have any extra leading or trailing spaces.

The type must be t ext but the subtype can be anything.
The type prefix must be “t ext / ”

This function behaves as follows:

The content with the given content Type and url is loaded.
The rest of the attributes needed for the content load are
specified by the default settings of the user agent.

If the load is successful and the returned content type
matches the given contentType, the content is converted to
a string and returned.

If the load 1s unsuccessful or the returned content is of the
wrong content type, a scheme-specific error code is
returned.

url=String
content Type=String

String, integer or invalid.

90

WNMLScript standard libraries

WMLScript Reference

Exceptions:

Example:

WMLBrowser library

Returns an integer error code that depends on the used URL
scheme if the load fails.

If HTTP or WSP schemes are used, HTTP error codes are
returned.

If an erroneous contentType is given, an i nval i d value is
returned.

var myUrl ="http://ww. acre. coni vcar ds/ nyaddr. vcf";
nmyCar d=URL. | oadStri ng(nmyUrl, "text/x-vcard");

Name:

Description:

getVar
Function:

Description:

Parameters:
Return value:

Exceptions:

Example:

WMLBrowser

This library contains functions which WMLScript uses to access
the associated WML context. These functions must not have
any side effects and they must return i nval i d in the following
cases:

The system does not support WML Browser.

The WMLScript interpreter is not invoked by the WML
Browser.

getVar(name)

Returns the value of the variable with the given name in the
current browser context.

If the given variable does not exist, returns an empty string.

The variable name must follow the syntax specified by the
WML Specification.

name=String
String or invalid.

Returns an i nval i d value if the syntax of the variable name is
incorrect.

var a=WWLBrowser. get Var (" nane");
/1 a="Jon" or whatever val ue the variable has.

91

WNMLScript Reference

WMLScript standard libraries

setVar

Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

go
Function:

Description:

Parameters:

Return value:

Exceptions:

setVar(name, value)

Returns t r ue if the variable with the given name is successfully
set to contain the given value in the current browser context.
Otherwise returns f al se.

The variable name and its value must follow the syntax
specified by the WML Specification.

The variable value must be legal XML CDATA.

name=String
value=String

Boolean or invalid.

Returns an i nval i d value if the syntax of the variable name or
its value is incorrect.

var a=WMLBrowser. set Var ("nane", Mary); Il a=true

go(url)

Specifies the content denoted by the given #7/ to be loaded. This
function has the same semantics as the GO task in WML.

The content is loaded only after the WML browser resumes
the control back from the WMLScript interpreter after the
WMLScript invocation is finished.

If the given 7/ is an empty string (""), no content is loaded.

The go() and prev() library functions override each other.

Both can be called many times before returning control to
the WML browser.

Only the settings of the last call stay in effect. In particular,
if the last call to go(') or prev() set the URL to an empty
string (""), all requests are effectively cancelled.

This function returns an empty string.

url=String

String or invalid.

92

WNMLScript standard libraries WMLScript Reference

Example: var card="http://ww. acne. coni | oc/ app. dck#start";

WWLBr owser . go(card);

prev
Function: prev()
Description: Signals the WML browser to go back to the previous WML
card. This function has the same semantics as the PREV task in
WML.
The previous card is loaded only after the WML browser
resumes the control back from the WMLScript interpreter
after the WMLScript invocationis finished.
The go() and prev() library functions override each other.
Both can be called many times before returning control to
the WML browser.
Only the settings of the last call stay in effect. In particular,
if the last call to go() or prev() set the URL to an empty
string (""), all requests are effectively cancelled.
This function returns an empty string.
Parameters: -
Return value: String or invalid.
Exceptions: -
Example: WWLBr owser . prev();
newContext
Function: newContext()
Description: Clears the current WML browser context and returns an empty
string. This function has the same semantics as the
NEWCONTEXT attribute in WML.
Parameters: -
Return value: String or invalid.
Exceptions: -
Example: WWLBr owser . newCont ext () ;

93

WNMLScript Reference

WMLScript standard libraries

getCurrentCard
Function: getCurrentCard()
Description: Returns the smallest relative URL specifying the card (if any)

Parameters:

Return value:

Exceptions:

Example:

refresh
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

Dialogs library

currently being processed by the WML browser. The function
returns an absolute URL if the WML deck containing the
current card does not have the same base as the current
compilation unit.

String or invalid.
Returns i nval i d in case there is no current card.

var a=WWLBrowser. get Current Card();
/1 a="deck#i nput"

refresh()

Forces the WML browser to update its context and returns an
empty string. As a result, the user interface is updated to reflect
the updated context. This function has the same semantics as the

REFRESH task in WML.

String or invalid.

WWLBr owser . set Var (" nane",
WWLBr owser . refresh();

"Zorro");

Name:

Description:

Dialogs

This library contains a set of typical user interface functions.

WNMLScript standard libraries

WMLScript Reference

prom pt
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

confirm
Function:

Description:

Parameters:

Return value:

Exceptions:

Example:

alert
Function:

Description:

Parameters:

Return value:

prompt(message, defanltInput)
Displays the given message and prompts for user input. The
defaultInput parameter contains the initial content for the user

input. Returns the user input.

message=String
defaultInpur=String

String or invalid.

var a="09-555 3456";
var b=Di al ogs. pronpt (" Phone nunber: ",a);

confirm(message, ok, cancel)

Displays the given message and two reply alternatives: ok and
cancel. Waits for the user to select one of the reply alternatives
and returns t r ue for ok and f al se for cancel.

message=String

ok=String (text, empty string results in the default
implementation-dependent text)

cancel=String (text, empty string results in the default text)

Boolean or invalid.

function onAbort() {
return Dial ogs.confirn{"Are you sure?", "Yes", "No");

}s

alert(message)

Displays the given message to the user, waits for the user to
confirm and returns an empty string.

message=String

String or invalid.

95

WNMLScript Reference WMLScript standard libraries

Exceptions: -

Example: function testVal ue(textE ement) {
if (String.length(textEl enent) > 8) {
Di al ogs. al ert("Enter nane < 8 chars!";
h
H

Library summary

The libraries:

Library name

Lang

Float

String

URL

WMLBrowser

Dialogs

The libraries and their functions:

Lang library

abs

min

max

parselnt

parseFloat

1sInt

isFloat

maxInt

96

WNMLScript standard libraries

WMLScript Reference

Lang library

minInt

float

exit

abort

random

seed

characterSet

Float library

int

floor

ceil

pow

round

sqrt

maxFloat

minFloat

String library

length

isEmpty

charAt

subString

find

97

WNMLScript Reference

WMLScript standard libraries

String library

replace

elements

elementAt

removeAt

replaceAt

insertAt

squeeze

trim

compare

toString

format

URL library

1sValid

getScheme

getHost

getPort

getPath

getParameters

getQuery

getFragment

getBase

getReferer

resolve

98

WNMLScript standard libraries WMLScript Reference

URL library

escapeString

unescapeString

loadString

WMLBrowser library

getVar

setVar

go

prev

newContext

getCurrentCard

refresh

Dialogs library

prompt

confirm

alert

Example application

The following WMLScript example shows how to calculate mortgage payments.

/*
* Cal culate a nortgage's paynent
*
*@ar am varnane the variable name to store the result
*@aram principal the principal
*@araminterest the interest rate
* @ar am num paynents the nunber of payenents
*@eturn the paynent
*/

99

WNMLScript Reference

WMLScript standard libraries

extern function paynent (varnanme, principal, interest, numpaynents) {

b

/*
* | nterest fornul ae:
*

*1f (i '=0), then:

* pnt = principal * [i * (1+i)*n / ((1+i)*n - 1)]

*

* If (i == 0), then:

* pnt = principal / n

*/

var m = interest/1200; /1 monthly interest from annual percentage

var paynent = 0;

if (m !'=0) {
var tnmp = Float.powm((1 + m), numpaynents);
payment = principal * (m * tmp / (tmp - 1));

} else {
if (numpaynments != 0)
paynment = principal / numpaynents;
}
var s;

if (payment != 0)
s = String.format ("$%. 2f", paynent);

el se
s = "M ssing data";
/*
* Send the result to the browser
*/
WWLBr owser . set Var (var nane, s);
/*
* Make sure the browser updates its current card
*/

WWLBr owser . refresh();

100

Appendix B

WMLScript non-standard
library

This appendix describes Nokia's non-standard "Debug" library.

Debug Library

Name: Debug
Description: This library contains a set of functions to help debug script
applications.

! Note: This is Nokia's proprietary extension to the WMLScript library.

openFile

Function: openFile (fileName, mode)

Description: Opens a file for reading, writing, or appending

Parameters: fileName=String mode=String ("r" = open fileName for
reading, "w" = open fileName for writing, "a" = open fileName
for appending)

Return value: An empty string or invalid.

Exceptions: If fileName is not successfully opened (e.g., fileName does not
exist) or the mode is not valid, invalid is returned. Invalid is also
returned if fileName or mode is not a String.

Example: Debug. openFil e("c\\tnp\\scri pt.debug", "r");

Debug. openFil e("c:\\tnp\\debug", "a"):

101

WMLScript Reference

WMLScript non-standard library

closeFile
Function:
Description:
Parameters:
Return value:
Exceptions

Example:

printin
Function:

Description:

Paremeters:
Return value:
Exceptions:

Example:

closeFile ()

Closes the Debug library file

An empty string.

Debug. cl oseFil e();

println(string)

Writes string to the currently open Debug output file. If
openFile has not been called, string is written to standard
output.

string=String

An empty string or invalid.

If string is not a String, invalid is returned.

Debug. println("Function f1 ENTRY ...");
Debug. printIn("Function f1 EXIT ...");

102

Appendix C

WMLScript grammar

This apendix discusses the standard grammar of WMLScript.

Context-free grammars

This section describes the context-free grammars used in this guide to define the
lexical and syntactic structure of a WMLScript program.

General

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side and a sequence of one
or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

A given context-free grammar specifies a language. It begins with a production
consisting of a single distinguished nonterminal called the goal symbol followed by
a (perhaps infinite) set of possible sequences of terminal symbols. They are the
result of repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

Lexical grammar

A lexical grammar for WMLScript is given below in section “NWMLScript lexical |
krammarf on page This grammar uses the characters of the Universal
Character set of ISO/IEC-10646 as its terminal symbols. It defines a set of
productions, starting from the goal symbol Input that describes how sequences of
characters are translated into a sequence of input elements.

The syntactic grammar of WMLScript is composed of terminal symbols called
tokens, which are input elements other than white space and comments. These
tokens are the reserved words, identifiers, literals and punctuators of the
WMLScript language. Simple white space and single line comments are discarded
and do not appear in the stream of input elements for the syntactic grammar.
Likewise, a multi-line comment is simply discarded if it contains no line terminator.
If a multi-line comment contains one or more line terminators then it is replaced by

103

WNMLScript Reference WMLScript grammar

a single line terminator, which becomes part of the stream of input elements for the
syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons (: :) as
separating punctuation.

Syntactic grammar

The syntactic grammar of WMLScript is given below in “lWMILScript syntactic |
’ on page This grammar features WMLScript tokens defined by the
lexical grammar as its terminal symbols. It defines a set of productions, starting
from the goal symbol CompilationUnit, that describe how sequences of tokens can
form syntactically correct WMLScript programs.

Productions of the syntactic grammar are distinguished by having just one colon (:)
as punctuation.

Numeric string grammar

A third grammar is used for translating strings into numeric values. This grammar is
similar to the part of the lexical grammar which deals with numeric literals, and uses
the characters of the US-ASCII character set as its terminal symbols. This grammar
appears below in “INumeric string grammar] on page

Productions of the numeric string grammar are distinguished by three colons (: : ¢)
used as punctuation.

Grammar notation

Throughout this guide, the terminal symbols of the lexical and string grammars,
and some of the terminal symbols of the syntactic grammar, are shown in the
Couri er bol d font, whenever the text directly refers to such a terminal symbol.
This is also true in the productions of the grammars, which are to appear in a
program exactly as written here.

Nonterminal symbols are shown in izalic font. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by one or more
colons. The number of colons indicates the grammar the production belongs to.
One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement :
whi | e (Expression) Statement

states that the nonterminal WhileStatement represents the token whi | e, followed
by a left parenthesis token, followed by an Expression, followed by a right
parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic
definition:

104

WMLScript grammar WMLScript Reference

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

states that an Argument List may represent either a single AssignmentExpression or
an ArgumentList, followed by a comma, followed by an AssignmentExpression.
This definition of ArgumentList is recursive, that is, it is defined in terms of itself.
The result is that an ArgumentList may contain any positive number of arguments,
separated by commas, where each argument expression is an AssignmentExpression.
Such recursive definitions of nonterminals are common.

The subscripted “opt”, which may appear after a terminal or nonterminal, indicates
an optional symbol. The alternative containing the optional symbol actually
specifies two right-hand sides, one that omits the optional element and one that
includes it. This means that:

VariableDeclaration :
Identifier VariableInitializerop:

is a convenient abbreviation for:

VariableDeclaration

Identifier
Identifier VariableInitializer

and that:

IterationStatement :
for (Expressione: ; Expressione: ; Expressionop) Statement

is a convenient abbreviation for:

TterationStatement -

for (; Expressione:; Expressionop:) Statement
for (Expression ; Expressiono:; Expressionopy:) Statement

which in turn is an abbreviation for:

105

WNMLScript Reference WMLScript grammar

IterationStatement :

for (;; Expressionoy:) Statement

for (; Expression; Expressiono:) Statement

for (Expression; ; Expressione:) Statement

for (Expression ; Expression; Expressione:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement
for (; ; Expression) Statement

for (; Expression;) Statement

for (; Expression; Expression) Statement

for (Expression; ;) Statement

for (Expression; ; Expression) Statement

for (Expression ; Expression;) Statement

for (Expression ; Expression; Expression) Statement

Therefore, the nonterminal IterationStatement actually has eight alternative right-

hand sides.

Any number of occurrences of LineTerminator may appear between any two
consecutive tokens in the stream of input elements without affecting the syntactic
acceptability of the program.

When the words “one of” follow the colon(s) in a grammar definition, they signify
that each of the terminal symbols on the following line or lines is an alternative
definition. For example, the lexical grammar for WMLScript contains the
production:

ZeroToThree : :

One of
0123

which is merely a convenient abbreviation for:

ZeroToThree : :

W N - O

When an alternative in a production of the lexical grammar or the numeric string
grammar appears to be a multicharacter token, it represents the sequence of
characters that would make up such a token.

106

WMLScript grammar WMLScript Reference

The right-hand side of a production may specify that certain expansions are not

& P y specity p
permitted by using the phrase “but not” and then indicating the expansions that are
not permitted. For example, the production:

Identifier: :
IdentifierName but not Reserved Word

means that the nonterminal Identifier may be replaced by any sequence of
characters that could replace IdentifierName provided that the same sequence of
characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in Roman
type in cases where it would be impractical to list all the alternatives:

SourceCharacter :

any Unicode character

Source text

WMLScript source text uses the Universal Character set of ISO/IEC-10646 to
represent a sequence of characters. Currently, this character set is identical to
Unicode 2.0. This guide uses the terms ISO 10646 and Unicode interchangeably to
indicate the same document character set.

SourceCharacter : :
any Unicode character

There is no requirement that WMLScript documents be encoded using the full
Unicode encoding, for example, UCS-4. Any character encoding (“charset”) that
contains an inclusive subset of the characters in Unicode may be used, for example,
US-ASCII or ISO-8859-1.

WMLScript programs can only be represented using ASCII characters, which are
equivalent to the first 128 Unicode characters. Non-ASCII Unicode characters may
appear only within comments and string literals. In string literals, any Unicode
character may also be expressed as a Unicode escape sequence consisting of six
ASCII characters, namely \ u plus four hexadecimal digits. Within a comment, such
an escape sequence is an effectively ignored part of the comment. Within a string
literal, the Unicode escape sequence contributes one character to the string value of
the literal.

107

WNMLScript Reference WMLScript grammar

WMLScript lexical grammar

The following contains the specification of the lexical grammar for WMLScript:

SourceCharacter : :

any Unicode character

WhiteSpace : :

<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

LineTerminator : :

<LF>
<CR>
<CR><LF>

Comment : :

MultiLineComment
SingleLineComment

MultiLineComment : :

1 * MultiLineCommentCharsop: * |

MultiLineCommentChars : :

MultiLineNotAsteriskChar MultiLine Comment Charsop:
* PostAsterisk Comment Charsop:

PostAsteriskCommentChars : :

MultiLineNotForwardSlashOrAsterisk Char MultiLine Comment Charsop:
* PostAsterisk Comment Charsop:

MultiLineNotAsteriskChar : :

SourceCharacter but not asterisk *

108

WMLScript grammar

WMLScript Reference

MultiLineNotForwardSlashOrAsteriskChar :

SourceCharacter but not forward-slash | or asterisk *

SingleLineComment : :

11 SingleLineComment Charsop

SingleLineCommentChars : :

SingleLineCommentChar Single Line Comment Charsop:

SingleLineCommentChar : :

SourceCharacter but not Line Terminator

Token ::

ReservedWord
Identified

Punctuator
Literal

ReservedWord : :

Keyword

KeywordNotUsedByWM LScript

FutureReservedWord

BooleanLiteral
InvalidLiteral

Keyword : :

One of
access
agent
br eak
conti nue
div
div=
domai n

el se

equi v
extern
for
function
header
http

if

isvalid

net a

name whi | e
path url
return

t ypeof

use

user

var

109

WNMLScript Reference

WMLScript grammar

KeywordNotUsedByWMLScript : :

One of
del et e

in

FutureReservedWord : :

One of
case
catch
cl ass
const

debugger

Identifier: :

lib

new

def aul t

do

enum

export

ext ends

nul |

this

finally
i mport
private
public

si zeof

IdentifierName but not Reserved Word

IdentifierName : :

Identifier Letter

IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter : :

One of

DecimalDigit : :
One of

0123456789

voi d

struct

super

switch

t hr ow

try

uv wxyz
UV WwWXYZ

110

WMLScript grammar

WMLScript Reference

Punctuator : :

One of
= > < ==
1= ! ~

&& | ++
- * / &
% << >> >>>
"= /= &= | =
<<= >>= >>>= (
} : #
Literal : :

InvalidLiteral

BooleanLiteral

NumericLiteral

StringLiteral

InvalidLiteral : :

invalid

BooleanLiteral : :

true
fal se

NumericLiteral : :

DecimallntegerLiteral
HexIntegerLiteral
OctallntegerLiteral
DecimalFloatLiteral

DecimallntegerLiteral : :

0
NonZeroDigit DecimalDigitsop:

111

WNMLScript Reference WMLScript grammar

NonZeroDigit : :

One of
123456789

HexIntegerLiteral : :

Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit : :

One of
0123456789 abcdef ABCDEF

OctallntegerLiteral : :

0 Octal Digit
OctallntegerLiteral OctalDigit

OctalDigit : :

One of
01234567

DecimalFloatLiteral : :

DecimallntegerLiteral . DecimalDigitsop: ExponentPartop:
. DecimalDigits ExponentPartop:
DecimallntegerLiteral ExponentPart

DecimalDigits : :

DecimalDigit
DecimalDigits DecimalDigit

ExponentPart : :

ExponentIndicator SignedInteger

ExponentIndicator : :

One of
e E

112

WMLScript grammar WMLScript Reference

SignedInteger : :

DecimalDigits
+ DecimalDigits
- DecimalDigits

StringLiteral : :

" DoubleStringCharactersop: "
' SingleStringCharactersop: '

DoubleStringCharacters : :

DoubleStringCharacter DoubleString Charactersop:

SingleStringCharacters : :

SingleStringCharacter SingleString Charactersop:

DoubleStringCharacter : :

SourceCharacter but not double-quote " or backslash\ or LineTerminator
EscapeSequence

SingleStringCharacter : :

SourceCharacter but not single-quote ' or backslash\ or LineTerminator
EscapeSequence

EscapeSequence : :

CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence : :

\ SingleEscapeCharacter

SingleEscapeCharacter : :
One of

"N/ bfnrt

113

WNMLScript Reference WMLScript grammar

HexEscapeSequence : :

\ x HexDaigit HexDigit

OctalEscapeSequence : :
\ OctalDigit
\ OctalDagit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree : :
One of

0123

UnicodeEscapeSequence : :

\ u HexDigit HexDigit HexDigit HexDigit

WMLScript syntactic grammar

The following contains the specification of the syntactic grammar for WMLScript.

PrimaryExpression :

Identifier
Literal
(Expression)

CallExpression :

PrimaryExpression
LocalScriptFunctionCall
ExternalScriptFunctionCall
LibraryFunctionCall

LocalScriptFunctionCall :

FunctionName Arguments

ExternalScriptFunctionCall :

ExternalScriptName # FunctionName Arguments

114

WMLScript grammar WMLScript Reference

LibraryFunctionCall :

LibraryName . FunctionName Arguments

FunctionName :

Identifier

ExternalScriptName :

Identifier

LibraryName :
Identifier

Arguments :

()
(ArgumentList)

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

PostfixExpression :

CallExpression
Identifier ++
Identifier - -

UnaryExpression :

PostfixExpression

typeof UnaryExpression
i sval i d UnaryExpression
++ [dentifier

- - Identifier

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

115

WNMLScript Reference WMLScript grammar

MultiplicativeExpression :

UnaryExpression

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression | UnaryExpression
MultiplicativeExpression di v UnaryExpression
MultiplicativeExpression %UnaryExpression

AdditiveExpression :

MultiplicativeExpression
AdditiveExpression + Multiplicative Expression
AdditiveExpression - Multiplicative Expression

ShiftExpression :

AdditiveExpression

ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression :

ShiftExpression

RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

EqualityExpression :

RelationalExpression
EqualityExpression == Relational Expression
EqualityExpression | = Relational Expression

BitwiseAND Expression :

EqualityExpression
Bitwise ANDExpression & EqualityExpression

BitwiseXORExpression :

Bitwise ANDExpression
Bitwise XORExpression ™ Bitwise ANDExpression

116

WMLScript grammar WMLScript Reference

BitwiseORExpression :

Bitwise XORExpression
BitwiseORExpression | BitwiseX ORExpression

Logical ANDExpression :

BitwiseORExpression
Logical ANDExpression & BitwiseORExpression

Logical ORExpression :

Logical ANDExpression
LogicalORExpression | | Logical ANDExpression

ConditionalExpression :

Logical ORExpression
Logical ORExpression ? AssignmentExpression : AssignmentExpression

AssignmentExpression :

ConditionalExpression
Identifier AssignmentOperator AssignmentExpression

AssignmentOperator : :

One of

= *= [= Y 4= -= <<= >>= >>>= &= "= | = div=

Expression :

AssignmentExpression
Expression , AssignmentExpression

Statement :

Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement

117

WNMLScript Reference WMLScript grammar

Block :

{ StatementListop: }

StatementlList :

Statement
StatementList Statement

VariableStatement :

var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :

Identifier VariableInitializerop:

Variablelnitializer :

= ConditionalExpression

EmptyStatement :

ExpressionStatement :

Expression ;

IfStatement :

i f (Expression) Statement el se Statement
i f (Expression) Statement

IterationStatement :

WhileStatement
ForStatement

118

WMLScript grammar WMLScript Reference

WhileStatement :

whi | e (Expression) Statement

ForStatement :

for (Expressione: ; Expressione: ; Expressionop) Statement
for (var VariableDeclarationList ; Expressionoy ; Expressiono:) Statement

ContinueStatement :

conti nue ;

BreakStatement :

break ;

ReturnStatement :

return Expressionop: ;

FunctionDeclaration :

ext er noy: f unct i on Identifier (FormalParameterListop:) Block ; op:

FormalParameterList :

Identifier
FormalParameterList , Identifier

CompilationUnit :

Pragmasop. FunctionDeclarations

Pragmas :

Pragma
Pragmas Pragma

Pragma :

use PragmaDeclaration ;

119

WNMLScript Reference

WMLScript grammar

PragmaDeclaration :

ExternalCompilationUnitPragma
AccessControlPragma
MetaPragma

ExternalCompilationUnitPragma :

url Identifier StringLiteral

AccessControlPragma :

access AccessControlSpecifier

AccessControlSpecifier :

donai n StringLiteral
pat h StringLiteral
domai n StringLiteral pat h StringLiteral

MetaPragma :

et a MetaSpecifier

MetaSpecifier :

MetaName
MetaHttpEquiv
MetaUserAgent

MetaName :

name MetaBody

MetaHttpEquiv :

http equi v MetaBody

MetaUserAgent :

user agent MetaBody

MetaBody :

MetaPropertyName MetaContent MetaSchemeop:

120

WMLScript grammar WMLScript Reference

MetaPropertyName :

StringLiteral

MetaContent :

StringLiteral

MetaScheme :

StringLiteral

FunctionDeclarations :

FunctionDeclaration
FunctionDeclarations FunctionDeclaration

Numeric string grammar

The following contains the specification of the numeric string grammar for
WMLScript. This grammar is used for translating strings into numeric values, is
similar to the part of the lexical grammar dealing with numeric literals, and uses the
characters of the Unicode character set as its terminal symbols.

The following grammar can be used to convert strings into the following numeric
literal values:

Decimal Integer Literal: Use the following productions starting from the goal
symbol StringDecimallntegerLiteral.

Decimal Floating-Point Literal: Use the following productions starting from
the goal symbol StringFloating Point Literal.

StringDecimallntegerLiteral : : :

StrWhiteSpaceop: StrSignedDecimallnteger Literal StrWhiteSpaceop:

StringDecimalFloatingPointLiteral : : :

StrWhiteSpaceop: StSignedrDecimallntegerLiteral StrWhiteSpaceop:
StrWhiteSpaceop: StrSignedDecimalFloatingPoint Literal StrWhiteSpaceop:

StrWhiteSpace : : :
StrWhiteSpaceChar StrWhiteSpaceop:

121

WNMLScript Reference WMLScript grammar

StrWhiteSpaceChar : : :

<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

StrSignedDecimallntegerLiteral : : :

StrDecimalDigits
+ StrDecimalDigits
- StrDecimalDigits

StrSignedDecimalFloatingPointLiteral ::

StrDecimalFloatingPoint Literal
+ StrDecimalFloatingPointLiteral
- StrDecimalFloatingPointLiteral

StrDecimalFloatingPointLiteral : : :

StrDecimalDigits . StrDecimalDigitsop: StrExponentPartop:
. StrDecimalDigits StrExponentPartop:
StrDecimalDigits StrExponentPart

StrDecimalDigits : : :

StrDecimalDigit
StrDecimalDigits StrDecimalDigit

StrDecimalDigit : : :

One of
0123456789

StrExponentPart : : :

StrExponentIndicator StrSignedInteger

StrExponentIndicator: : :

One of
e E

122

WMLScript grammar WMLScript Reference

StrSignedInteger: : :

StrDecimalDigits
+ StrDecimalDigits
- StrDecimalDigits

URL call syntax

This section contains the grammar for specifying the syntactic structure of the URL
call. It uses the characters of the US-ASCII character set as its terminal symbols.

http://ww. acnme. conf scr#foo(1, -3, 'hello") Il K

http://ww. acrme. coni scr#bar (1, -3+1, 'good') /1 Error
http://ww. acne. con scr#test(foo(1, -3, "hello')) // Error

URLCallFragmentAnchor: : :

FunctionName ()
FunctionName (ArgumentList)

FunctionName : : :

FunctionNameLetter
FunctionName FunctionNameLetter
FunctionName DecmalDigit

FunctionNamelLetter : : :

One of
efghi j kl mnopgrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ

DecimalDigit : : :

One of
01234567829

ArgumentList : : :

Argument
ArgumentList , Argument

123

WNMLScript Reference WMLScript grammar

Argument : ::

WhiteSpaceop: Literal WhiteSpaceop:

WhiteSpace : : :

Any US-ASCII character with a character code less than or equal to 32.

Literal : ::

InvalidLiteral
BooleanLiteral
NumericLiteral
StringLiteral

InvalidLiteral : : :

invalid

BooleanLiteral : : :

true
fal se

NumericLiteral : : :

SignedDecimallntegerLiteral
SignedDecimalFloat Literal

SignedDecimallntegerLiteral : : :

DecimallntegerLiteral
+ DecimallntegerLiteral
- DecimallntegerLiteral

DecimallntegerLiteral : : :

DecimalDigit DecimalDigitsop:

SignedDecimalFloatLiteral : : :

DecimalFloatLiteral
+ DecimalFloatLiteral
- DecimalFloatLiteral

124

WMLScript grammar WMLScript Reference

DecimalFloatLiteral : : :

DecimallntegerLiteral . DecimalDigitsop: ExponentPartop:
. DecimalDigits ExponentPartop
DecimallntegerLiteral ExponentPart

DecimalDigits : : :

DecimalDigit
DecimalDigits DecimalDigit

ExponentPart : : :

ExponentIndicator SignedInteger

ExponentIndicator : : :

One of
e E

SignedInteger:::

DecimalDgits
+ DecimalDigits
- DecimalDigits

StringLiteral : : :

" DoubleString Charactersop: "
* SingleStringCharactersop: '

DoubleStringCharacters : : :

DoubleString Character DoubleString Charactersop:

SingleStringCharacters : : :

SingleString Character SingleString Charactersop:

DoubleStringCharacter : : :

SourceCharacter but not double-quote " or backslash \
EscapeSequence

125

WNMLScript Reference

WMLScript grammar

SingleStringCharacter: : :

SourceCharacter but not single-quote’ or backslash \
EscapeSequence

EscapeSequence : : :

CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence : : :

\ SingleEscapeCharacter

SingleEscapeCharacter : : :

One of
"N/ bfnrt

HexEscapeSequence : : :

\ x HexD:igit HexDigit

OctalEscapeSequence : : :

\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree: : :

One of
0123

UnicodeEscapeSequence : : :

\ u HexD:igit HexDigit HexDigit HexDigit

126

Glossary

The following terms and conventions are used throughout this document.

American Standard Code for Information Interchange (ASCII)

ASCII is a standard developed by the American National Standards Institute
(ANSI) to define computer-intelligible values for characters used in text. The
ASCII set of 128 characters includes upper-case and lower-case letters of the
English alphabet, numbers, punctuation, and 33 control codes (such as tab, bell
, carriage return). ASCII uses 7 bits to represent each character. You may see
ASCII characters identified by a decimal number from 0 to 127.

The standard ASCII character set uses just 7 bits for each character,
consequently one bit of each octet is not used. Larger character sets, known as
extended ASCII or high ASCI], use all 8 bits, allowing as many as 128
additional characters to be defined. Numerous extensions to ASCII have been
devised and quite a few have become national or international standards.
Notable among them is a family of international standards, ISO-8859, that
defines extensions appropriate to certain language groups which ASCII alone
cannot support. The most important member of this group is ISO-8859-1,
known as ISO Latin-1, which provides for the languages of western Europe.

Attribute

A syntactical component of a WML element which is often used to specify a
characteristic quality of an element, other than type or content.

Author

An author is a person or program that writes or generates WML, WMLScript
or other content.

Bandwidth

Bandwidth is the capacity that a telecommunications medium has for carrying
data. For analog or voice communication, bandwidth is measured in the
difference between the upper and lower transmission frequencies expressed in
cycles per second, or hertz (Hz). For digital communication, bandwidth and
transmission speed are usually treated as synonyms and measured in bits per

127

WNMLScript Reference

Glossary

second. The actual speed or transmission time of any message or file from
origin to destination depends on a number of factors. Most Internet
transmissions travel at very high speed on fiber optic lines most of the way.
Switching en route, lower bandwidths on local loops at both ends, and server
processing time add to the overall transmission time.

Byte

A sequence of consecutive bits treated as a unit. On almost all modern
computers, a byte is comprised of 8 bits, though other numbers were formerly
encountered. To avoid ambiguity, the term octet is used in the language of
international standards to refer to an 8-bit unit.

Large amounts of memory are indicated in terms of kilobytes (1,024 bytes),
megabytes (1,048,576 bytes), and gigabytes (approximately 1 billion bytes). A
disk that can hold 1.44 megabytes, for example, is capable of storing
approximately 1.4 million ASCII characters, or about 3,000 pages of
information.

Bytecode

Content encoding where the content is typically a set of low-level opcodes,
that is, instructions, and operands for a targeted piece of hardware or virtual
machine.

Card

A single WML navigational and user interface unit. A card may contain
information to present to the user or instructions for gathering user input, for
example.

Character Encoding

When used as a verb, character encoding refers to a conversion between
sequence of characters and a sequence of bytes. When used as a noun, character
encoding refers to a method for converting a sequence of bytes to a a sequence
of characters. Typically, WML document character encoding is captured in
transport headers attributes, meta information placed within a document, or
the XML declaration defined by the XML specification.

Client

A device or application that initiates a request for connection with a server.

128

Glossary WMLScript Reference

Common Gateway Interface (CGI)

A programming language that enables you to use forms on your web site.

Concatenation

Concatenating two strings means sticking them together, one after another, to
make a new string. For example, the string “foo” concatenated with the string
“bar” gives the string “foobar”.

Content

Subject matter stored or generated at a web server. Content is typically
displayed or interpreted by a user agent in response to a user request.

Content encoding

When used as a verb, content encoding indicates the act of converting a data
object from one format to another. Typically the resulting format requires less
physical space than the original, is easier to process or store and/or is
encrypted. When used as a noun, content encoding specifies a particular format
or encoding standard or process.

Content format

Actual representation of content.

Deck
A collection of WML cards. A WML deck is also an XML document.

Device

A network entity that is capable of sending and receiving packets of
information and has a unique device address. A device can act as both a client
or a server within a given context or across multiple contexts. For example, a
device can service a number of clients as a server while being a client to another
server.

Extensible Markup Language (XML)

The Extensible Markup Language is a World Wide Web Consortium (W3C)
standard for Internet markup languages, of which WML is one such language.
XML is a restricted subset of SGML.

129

WMLScript Reference Glossary

Hypertext transfer protocol (HTTP)
HTTP is the underlying protocol used by the World Wide Web. HTTP defines

how messages are formatted and transmitted, and what actions web servers and
browsers should take in response to various commands. For example, when
you enter an URL in your browser an HT'TP command is sent to the web
server directing it to retrieve and transmit the requested web page.

JavaScript™

A de facto standard language that can be used to add dynamic behaviour to
HTML documents.

Resource

A network data object or service that can be identified by an URL. Resources
may be available in multiple representations (for example, multiple languages,
data formats, size and resolutions) or vary in other ways.

Server

A device or application that passively waits for connection requests from one
or more clients. A server may accept or reject a connection request from a
client.

Standardized Generalized Markup Language (SGML)

The Standardized Generalized Markup Language is a general-purpose language
for domain-specific markup languages. SGML is defined in the 7SO 8879
standard.

Terminal

A device providing the user with user agent capabilities, including the ability to
request and receive information. Also called a mobile terminal or mobile
station.

Transcode

The act of converting from one character set to another, for example,
conversion from UCS-2 to UTF-8.

Unicode

An encoding scheme for written characters and text. Unlike ASCII, which uses
7 bits for each character, Unicode uses 16 bits, which means that it can

130

Glossary WMLScript Reference

represent more than 65,000 unique characters, a huge increase over ASCII’s
code capacity of 128 characters. Unicode was authored and is maintained by
the Unicode Consortium, a group comprised of major corporations and
institutions involved in international computing. The character repertory and
the codes assigned in Unicode are identical to those specified by ISO 10646, the
international Universal Character Set (UCS) standard.

The Unicode Standard, Version 2.0 defines codes for characters used in every
major language written today. In all, the Unicode standard currently defines
codes for nearly 39,000 characters from the world’s alphabetic, ideographic and
syllabic scripts and symbol collections. The Unicode repertory was derived
from many pre-existing character set standards to which previously
unstandardized characters have been added. In particular, the first 256 code
values are identical to those of ISO 8859-1 extended to 16 bits. Unicode values
are displayed as four hex digits preceded by U+. For example, U+0041 is Latin
upper-case A.

Uniform Resouce Identifier (URI)

Uniform Resource Identifiers (URI) identify resources in the web: documents,
images, downloadable files, services, electronic mailboxes, and other resources.
A URI can refer to an Uniform Resource Locator (URL) or an Uniform
Resource Name (URN).

Uniform Resource Locator (URL)

URL stands for Uniform Resource Locator and is an address referring to a
document on the Internet. The syntax of an URL consists of three elements:

— The protocol, or the communication language, that the URL uses.
— The domain name, or the exclusive name that identifies a web site.

— The pathname of the file to be retrieved.

User

A user is a person who interacts with a user agent to view, hear or otherwise
use a rendered content.

User agent

A user agent is any piece of software or physical device that interprets WML,
WMLScript, WTALI or other resources. They may include textual browsers,
voice browsers and search engines, for example.

131

WMLScript Reference Glossary

Web server

The server on which a given resource resides or is to be created. Often referred
to as an origin server or an HTTP server.

Wireless Application Environment (WAE)

The Wireless Application Environment specifies a general-purpose application
environment based fundamentally on World Wide Web technologies and
philosophies. WAE specifies an environment that allows operators and service
providers to build applications and services that can reach a wide variety of
different platforms. WAE is part of the Wireless Application Protocol.

Wireless Application Protocol (WAP)

The Wireless Application Protocol specifies an application framework and
network protocols for wireless devices such as mobile phones, pagers, and
personal digital assistants (PDAs). The WAP specifications extend mobile
networking technologies (such as digital data networking standards) and
Internet technologies (such as XML, URLs, scripting, and various content
formats).

Wireless Markup Language (WML)

The Wireless Markup Language is a hypertext markup language used to
represent information for delivery to a narrowband device such as a mobile
phone.

Wireless Markup Language Script (WMLScript)

A scripting language used to program the mobile device. WMLScript is an
extended subset of the JavaScript™ scripting language.

Wireless Session Protocol (WSP)

The Wireless Session Protocol provides the upper-level application layer of
WAP with a consistent interface for two session services. The first is
connection-mode service that operates above a transaction layer protocol, and
the second is a connectionless service that operates above a secure or non-
secure datagram transport service.

132

Index

A

abort function, 68

abs function, 63

Access control, 3, 39

al ert function, 95
Arithmetic operators, 20
Array operators, 23
Assignment operators, 19

Automatic data type conversion rules, 43

Block statement, 32
Boolean literals, 14
Boolean values, 19
br eak statement, 36
Bytecode errors, 52

access violation, 54

external function not found, 53
fatal library function error, 52
invalid function arguments, 53
stack underflow, 54

unable to laod compilation unit, 53

verification failed, 52

C

Calling functions, 28

external functions, 29
library functions, 30
local script functions, 29

Case sensitivity, 9
cei | function, 71
Character escaping, 8

char act er Set , 69

char At function, 74

Comma operator, 24

Comments, 10

conpar e function, 81

Comparison operators, 23

Computational errors, 57
divide by zero, 57
floating-point overflow, 58
floating-point underflow, 58

integer overflow, 57

Conditional operator, 24
conf i r mfunction, 95
Constant reference errors, 58

illegal floating-point reference, 59
infinite floating-point constant, 59

not a number floating-point
constant, 58

Content types of WMLScript, 9
cont i nue statement, 36
Conversion errors, 59

floating-point too large, 60
floating-point too small, 60
integer too large, 59

Conversion rules, 43
Conversions

operator data types, 46
summary, 45

to boolean, 45

to floating-point, 44
to integer, 44

to invalid, 45

to string, 44

133

WNMLScript Reference

Index

D

Data type conversions, 43

summary, 45

to boolean, 45

to floating-point, 44
to integer, 44

to invalid, 45

to string, 44

Declaring functions, 27
Detecting runtime errors, 51
Di al ogs library, 94

alert,95
confirm9s
pronpt, 95

E

el ement At function, 77
el ement s function, 77

Empty statement, 31

Error detection and handling, 51

escapesSt ri ng function, 89
exi t function, 67
Expression statement, 31

Expressions, 25

bindings, 25

Extensible Markup Language, 1

External compilation units, 38

External exceptions, 56
system initiated, 56
user initiated, 56

External functions, 29

F

Fatal errors, 52

bytecode errors, 52
external exceptions, 56
memory exhaustion, 55
programmed abort, 54

fi nd function, 76

f1 oat function, 67

Fl oat library, 70

ceil,71

floor,70

int,70

maxFl oat , 72

m nFl oat, 73

pow, 71

round, 72

sqrt,72
Floating-point literals, 12

Floating-point size, 18
f1 oor function, 70

f or statement, 35

f or mat function, 82
Fragment anchors, 7

Functions, 27

abort, 68

abs, 63

alert,95

calling, 28

ceil,71

char act er Set, 69
char At , 74

conpar e, 81
confirm95s
declaration, 27
default return value, 31
el enent At, 77

el enents, 77
escapeString, 89
exit,67

external functions, 29
find, 76

float, 67
floor,70

formt, 82

get Base, 87

get Current Card, 94
get Fragnent, 87
get Host , 85

get Par anet er s, 86
get Pat h, 86

get Port, 85

get Query, 87

get Ref erer, 88
get Schenme, 84

134

Index

WMLScript Reference

get Var, 91

go, 92
insertAt,79
int,70

i SEnpty, 74

i skl oat, 66

i slnt,66
isvalid,84

| engt h, 74
library functions, 30
| oadStri ng, 90
local script functions, 29
max, 64

maxFl oat , 72
max| nt, 66

m n, 63

m nFl oat, 73

m nl nt, 67
newCont ext, 93
par seFl oat, 65
parsel nt, 64
pow, 71

prev, 93
pronpt, 95
random 68
refresh, 94
renoveAt, 78
repl ace, 76
repl aceAt,79
resol ve, 88
round, 72
seed, 69

set Var, 92
sqrt,72
squeeze, 80
subString, 75
toString, 81
trima80
unescapeStri ng, 89

G

get Base function, 87

get Cur r ent Car d function, 94
get Fragnent function, 87
get Host function, 85

get Par anet er s function, 86

get Pat h function, 86

get Port function, 85
get Quer y function, 87
get Ref er er function, 88
get Schene function, 84
get Var function, 91
Glossary, 127

go function, 92

H

Handling runtime errors, 51

|

Identifiers, 14

i f statement, 34

i nsert At function, 79
i nt function, 70
Integer literals, 10
Integer size, 18
Invalid literals, 14

i SEnpty function, 74
i sFl oat function, 66
i sl nt function, 66

i sVal i d function, 84

i sval i d operator, 25

L

I ang, 69
Lang library, 63

abort, 68
abs, 63
exit,67
float, 67

i skl oat, 66
i slnt,66
max, 64

maxl| nt, 66
m n, 63

m nl nt, 67
par seFl oat, 65
parsel nt, 64
random 68
seed, 69

135

WNMLScript Reference

Index

| engt h function, 74
Lexical structure, 9
Libraries, 37, 61

Di al ogs, 94

Fl oat, 70

Lang, 63

String,73

summary, 96

URL, 84

WWMLBr owser , 91
Library functions, 30
Library summary, 96
Line breaks, 9
Literals, 10

boolean, 14
floating-point, 12
integer, 10
invalid, 14
string, 12

| oadSt ri ng function, 90

Local script functions, 29

Logical operators, 22

M

Making URL calls, 8

max function, 64

maxFl oat function, 72

max| nt function, 66
Memory exhaustion errors, 55

out of memory, 55
stack overflow, 55

Meta information, 40

HTTP equi v, 42

nane, 41

user agent,42
m n function, 63

m nFl oat function, 73

m nl nt function, 67

N

Name spaces, 16

newCont ext function, 93

Non-fatal errors, 57

computational errors, 57

constant reference errors, 58

conversion errors, 59
Numeric values, 18
floating-point size, 18

integer size, 18

o)

Operators, 19

arithmetic, 20
array, 23
assignment, 19
comma, 24
comparison, 23
conditional, 24
i svalid,?25
logical, 22
multi-typed, 49
single-typed, 48
string, 22
summary, 48

t ypeof, 24

P

par seFl oat function, 65
par sel nt function, 64
pow function, 71

Pragmas, 38

access control, 39

external compilation units, 38

meta information, 40

pr ev function, 93
Programmed abort, 54

pronpt function, 95

R

r andomfunction, 68

r ef r esh function, 94
Related documents, 4
Relative URLs, 8
renoveAt function, 78
r epl ace function, 76

repl aceAt function, 79

136

Index

WMLScript Reference

Reserved words, 15, 109

r esol ve function, 88

r et ur n statement, 37

Return value, 31

r ound function, 72

Runtime error detection and handling, 51
Runtime errors, 51

fatal errors, 52

non-fatal errors, 57

S

seed function, 69
Semicolon, 10

set Var function, 92
sqrt function, 72
squeeze function, 80

Statements, 31

block, 32
br eak, 36
conti nue, 36
empty, 31
expression, 31
for,35
if,34
return,37
variable, 32
whi | e, 34
Stri ng library, 73

char At , 74
conpar e, 81

el enent At, 77
el enent s, 77
find,76
formt, 82
insertAt,79

i SEmpty, 74

| engt h, 74
renoveAt, 78
repl ace, 76
repl aceAt, 79
squeeze, 80
subString, 75
toString, 81
trim80

String literals, 12
String operators, 22
String values, 19

subSt ri ng function, 75

T
Terms, 127

t oSt ri ng function, 81
t ri mfunction, 80
Type equivalency, 18

t ypeof operator, 24

Typographical conventions, 4

U

unescapeSt ri ng function, 89
Uniform Resource Locators, 7

URL. See Uniform Resource Locators
URL call syntax, 123

URL library, 84

escapeString, 89
get Base, 87

get Fragnent, 87
get Host , 85

get Par anet er s, 86
get Pat h, 86

get Port, 85

get Query, 87

get Ref erer, 88
get Schenme, 84

i svValid,84

| oadStri ng, 90
resol ve, 88
unescapeStri ng, 89

\'/

Variable statement, 32
Variables

access, 17

boolean values, 19
declaration, 16
lifetime, 16
L-values, 17
numeric values, 18

scope, 16

137

WNMLScript Reference

Index

string values, 19
type equivalency, 18
types, 17

Variables and data types, 16

w

WAP. See Wireless Application Protocol
whi | e statement, 34

White space, 9

Wireless Application Protocol, 1
Wireless Markup Language, 1

Wireless Session Protocol, 7

WML. See Wireless Markup Language
WWLBr owser library, 91

get Current Card, 94
get Var, 91

go, 92

newCont ext , 93
prev, 93

refresh, 94

set Var, 92
WMLScript and URLs, 7

WMLScript bytecode interpreter, 2
WMLScript core, 7
WMLScript grammar, 103

context-free, 103
grammar notation, 104
lexical, 103, 108
numeric string, 104, 121
source text, 107
syntactic, 104, 114
URL call syntax, 123
WMLSecript libraries, 37

WMLScript standard libraries, 61

data type conversions, 62
error handling, 62
supported data types, 62

WSP. See Wireless Session Protocol

X

XML. See Extensible Markup Language

138

	Introduction
	Benefits of using WMLScript
	WMLScript bytecode interpreter
	Interpreter Architecture
	Access control
	Character Set

	Typographical conventions
	Related documents
	Documents included in the Nokia WAP Toolkit
	Other references

	WMLScript core
	WMLScript and URLs
	Fragment anchors
	URL calls and parameter passing
	Character escaping
	Relative URLs

	Lexical structure
	Content types
	Case sensitivity
	White space and line breaks
	Use of semicolons
	Comments
	Literals
	Integer literals
	Floating-point literals
	String literals
	Boolean literals
	Invalid literal

	Identifiers
	Reserved words
	Name spaces

	Variables and data types
	Variable declaration
	Variable scope and lifetime
	Variable access
	Variable type
	L-values
	Type equivalency
	Numeric values
	Integer size
	Floating-point size

	String values
	Boolean values

	Operators and expressions
	Assignment operators
	Arithmetical operators
	Logical operators
	String operators
	Comparison operators
	Array operators
	Comma operator
	Conditional operator
	typeof operator
	isvalid operator
	Expressions
	Expression bindings

	Functions
	Declaration
	Function calls
	Local script functions
	External functions
	Library functions

	Default return value

	Statements
	Empty statement
	Expression statement
	Block statement
	Variable statement
	If statement
	While statement
	For statement
	Break statement
	Continue statement
	Return statement

	Libraries
	Standard libraries

	Pragmas
	External compilation units
	Access control
	Meta information
	Name
	HTTP equiv
	User agent

	Automatic data type conversion rules
	General conversion rules
	Conversions to string
	Conversions to integer
	Conversions to floating-point
	Conversions to boolean
	Conversions to invalid
	Summary

	Operator data type conversion rules
	Summary of operators and conversions
	Single-typed operators
	Multi-typed operators

	Runtime error detection and handling
	Error detection
	Error handling
	Fatal errors
	Bytecode errors
	Verification failed
	Fatal library function error
	Invalid function arguments
	External function not found
	Unable to load compilation unit
	Access violation
	Stack underflow

	Programmed abort
	Memory exhaustion errors
	Stack overflow
	Out of memory

	External exceptions
	Initiated by the user
	Initiated by the system

	Non-fatal errors
	Computational errors
	Divide by zero
	Integer overflow
	Floating-point overflow
	Floating-point underflow

	Constant reference errors
	Not a number floating-point constant
	Infinite floating-point constant
	Illegal floating-point reference

	Conversion errors
	Integer too large
	Floating-point too large
	Floating-point too small

	WMLScript standard libraries
	Typographical conventions
	WMLScript compliance
	Supported data types
	Data type conversions
	Error handling

	Lang library
	abs
	min
	max
	parseInt
	parseFloat
	isInt
	isFloat
	maxInt
	minInt
	float
	exit
	abort
	random
	seed
	characterSet

	Float library
	int
	floor
	ceil
	pow
	round
	sqrt
	maxFloat
	minFloat

	String library
	length
	isEmpty
	charAt
	subString
	find
	replace
	elements
	elementAt
	removeAt
	replaceAt
	insertAt
	squeeze
	trim
	compare
	toString
	format

	URL library
	isValid
	getScheme
	getHost
	getPort
	getPath
	getParameters
	getQuery
	getFragment
	getBase
	getReferer
	resolve
	escapeString
	unescapeString
	loadString

	WMLBrowser library
	getVar
	setVar
	go
	prev
	newContext
	getCurrentCard
	refresh

	Dialogs library
	prompt
	confirm
	alert

	Library summary
	Example application

	WMLScript non-standard library
	Debug Library
	openFile

	WMLScript grammar
	Context-free grammars
	General
	Lexical grammar
	Syntactic grammar
	Numeric string grammar
	Grammar notation
	Source text

	WMLScript lexical grammar
	WMLScript syntactic grammar
	Numeric string grammar
	URL call syntax

	Glossary
	Index

